Efficient energy management for a grid-tied residential microgrid

Amjad Anvari-Moghaddam1, Josep M. Guerrero2, Juan C. Vasquez1, Hassan Monsef1, Ashkan Rahimi-Kian2

1Department of Energy Technology, Aalborg University, 9220 Aalborg East, Denmark
2School of ECE, College of Engineering, University of Tehran, Tehran, Iran

Abstract: In this study, an effective energy management system (EMS) for application in integrated building and microgrid system is introduced and implemented as a multi-objective optimisation problem. The proposed architecture covers different key modelling aspects such as distributed heat and electricity generation characteristics, heat transfer and thermal dynamics of various simulation studies under different working scenarios with real data, different system constraints and user's objectives, the effectiveness and applicability of the proposed model are studied and validated compared with the existing residential EMSs. The simulation results demonstrate that the proposed EMS has the capability not only to conserve energy in sustainable homes and microgrid system and to reduce energy consumption costs accordingly, but also to satisfy user's comfort level through optimal scheduling and operation management of both demand and supply sides.

Nomenclature

\(H() \) \hspace{1cm} \text{heaviside step function}

Sets

\(h \) \hspace{1cm} \text{index of time}
\(M \) \hspace{1cm} \text{set of non-schedulable tasks}
\(N \) \hspace{1cm} \text{set of schedulable tasks}
\(T \) \hspace{1cm} \text{set of time intervals in a given day}
\(T_v \) \hspace{1cm} \text{set of time intervals in a valid optimisation period}

Parameters

\(A \) \hspace{1cm} \text{WT rotor swept area (m}^2\text{)}
\(A_{\text{cloth}} \) \hspace{1cm} \text{surface area of a clothed person (m}^2\text{)}
\(A_f \) \hspace{1cm} \text{floor area on the sunny side of the building (m}^2\text{)}
\(A_s \) \hspace{1cm} \text{exposed surface area (m}^2\text{)}
\(A_{\text{st}} \) \hspace{1cm} \text{surface area of a hot water storage tank (m}^2\text{)}
\(C_p \) \hspace{1cm} \text{WT efficiency coefficient}
\(\alpha_{\text{p.f,c,p,l}} \) \hspace{1cm} \text{specific heat capacity coefficient of the floor and the indoor air \([J/(kg\cdot°C)]\)}
\(E_{\text{BESS}} \) \hspace{1cm} \text{battery energy capacity (kWh)}
\(f_{\text{load}} \) \hspace{1cm} \text{load factor of a motor during operation (%)}
\(f_{\text{PV}} \) \hspace{1cm} \text{PV derating factor (%)}
\(F_r \) \hspace{1cm} \text{radiation factor of a cooking appliance (%)}
\(F_u \) \hspace{1cm} \text{usage factor of a cooking appliance (%)}
\(f_{\text{usage}} \) \hspace{1cm} \text{motor usage factor (%)}
\(G_{\text{ref}} \) \hspace{1cm} \text{nominal gas consumption rate for producing 1 kWh energy (m}^3\text{)/kWh)}
\(G_{\text{RT}, T_{\text{STC}}} \) \hspace{1cm} \text{radiation incident on PV in real and test conditions (kW/m}^2\text{)}
\(k_{\text{conv}} \) \hspace{1cm} \text{convection heat transfer coefficient (W/(m}^2\text{ °C))}
\(k_c \) \hspace{1cm} \text{combined convection and radiation heat transfer coefficient (W/(m}^2\text{ °C))}
\(k_{\text{rad}} \) \hspace{1cm} \text{radiation heat transfer coefficient (W/(m}^2\text{ °C))}
\(\text{HWD} \) \hspace{1cm} \text{hot water demand (l)}
\(I \) \hspace{1cm} \text{direct solar radiation (W/m}^2\text{)}
\(m_d, m_t \) \hspace{1cm} \text{active-droop constants of the VCM and PCM units [(rad/s)/W]}
\(m_{dt}, m_{it} \) \hspace{1cm} \text{mass of the floor and the indoor air (kg)}
\(n_d, n_t \) \hspace{1cm} \text{reactive-droop constants of the VCM and PCM units [(rad/s)/Var]}
\(P_D, P_{\text{ch}}, P_{\text{dch}} \) \hspace{1cm} \text{maximum power consumption of a house (kW)}
\(f_p, f_c \) \hspace{1cm} \text{upper and lower limits on a μCHP electrical output (kW)}
\(P_{\text{th}} \) \hspace{1cm} \text{upper and lower limits on a μCHP thermal output (kW)}
\(P_{\text{th}, \text{ramp}} \) \hspace{1cm} \text{heat demand (kW)}
\(P_{\text{th}, \text{ramp}} \) \hspace{1cm} \text{maximum allowable μCHP electrical ramp rate (kW/h)}
\(P_{\text{th}, \text{ramp}} \) \hspace{1cm} \text{maximum allowable μCHP thermal ramp rate (kW/h)}
\(\Delta T_{\text{th}} \) \hspace{1cm} \text{threshold temperature difference (°C)}
\(P_a \) \hspace{1cm} \text{rated power of a motor (kW)}
\(R_{\text{cloth}} \) \hspace{1cm} \text{unit thermal resistance of clothing ((m}^2\text{ °C)/W)}
\(R_{\text{combined}} \) \hspace{1cm} \text{combined resistance ((m}^2\text{ °C)/W)}
\(R_\text{st} \) \hspace{1cm} \text{thermal resistance of the HWST ((m}^2\text{ °C)/W)}
\(\text{SAF} \) \hspace{1cm} \text{lighting special allowance factor}
\(\text{SF} \) \hspace{1cm} \text{space fraction (%)}
\(T_b \) \hspace{1cm} \text{basement temperature (°C)}
\(T_{c}, T_{c, \text{STC}} \) \hspace{1cm} \text{PV cell temperature at real and test conditions (°C)}
\(T_{cw} \) \hspace{1cm} \text{entering cold water temperature (°C)}
\(T_{eq} \) \hspace{1cm} \text{mean radiant and ambient temperatures (°C)}
\(T_{\text{out}} \) \hspace{1cm} \text{outdoor temperature (°C)}
\(T_{\text{set}} \) \hspace{1cm} \text{user-specified set-point for indoor temperature (°C)}
\(T_{\text{surr}} \) \hspace{1cm} \text{average surrounding surface temperature (°C)}
\(U \) \hspace{1cm} \text{overall heat transfer coefficient (W/(m}^2\text{ °C))}
\(\text{UF} \) \hspace{1cm} \text{lighting usage factor (%)}
\(V \) \hspace{1cm} \text{wind velocity (m/s)}
\(V_{\text{tot}} \) \hspace{1cm} \text{nominal output of a PV array (kW)}
\(\eta_{\text{PV}} \) \hspace{1cm} \text{solar absorptivity of the house floor (%)}

ISSN 1751-8687
Received on 20th July 2016
Revised 24th January 2017
Accepted on 24th April 2017
E-First on 25th April 2017
www.ietdl.org

© The Institution of Engineering and Technology 2017

1 Introduction

Average energy consumption distribution in different sectors at the worldwide level illustrates that more than one-third of total consumption in each society is contributed by the residential buildings [1, 2]. Although the rising rate of energy consumption in this sector has slowed down recently thanks to the energy-aware solutions, the energy price is still going up [3, 4]. In this regard, many ongoing research activities are directed towards energy efficiency in residential buildings and its impact on environment and climate [5–10]. Accordingly, a large number of initiatives have also been taken into account for the promotion of sustainable consumption and green living patterns as well as delivery of affordable clean and reliable power to customers which in turn necessitates the use of smart building automation and energy management solutions. Although ‘energy management’ is a term that has a number of meanings, in this paper we concern about the process of energy auditing and optimal scheduling of energy sources in a given organisation here called as integrated building and microgrid systems or residential microgrids. With regard to this terminology and in the way to address emerging challenges and the gaps in this area, extensive research programmes have been initiated recently and many researchers around the world have elaborated on that [11–29]. For example, a building energy management system is proposed in [11] to enable users to monitor, manage and control the energy used in their own buildings, thus reducing the demand and energy consumption costs. Similar smart energy management system is outlined in [12], where a day-ahead scheduling algorithm is utilised for managing different distributed energy resources at each time with regard to minimum operation cost of the microgrid. An optimal energy scheduling for a residential grid-tied microgrid supplemented by battery energy storage systems (BESSs) is developed in [13] and a computationally efficient algorithm for determining the optimal exploitation of energy sources from economic perspectives is proposed thereafter. A penny-wise algorithm for energy management in a home environment is proposed in [14] considering real-time pricing (RTP) for electricity consumption. Another cost-efficient residential load scheduling framework is introduced in [15] paying no attention to the optimal control and management of in-home generation devices that can support further reduction of end-use energy costs. Similar demand scheduling and energy management strategies are also developed in [16–22] for residential/office buildings, in [23–25] for energy hubs and small- to medium-size microgrids, and in [26–29] for integrated smart homes/buildings and microgrid systems.

Based on the reviewed literature, it can be easily understood that there exist numerous research works that have tackled the energy management problem in residential microgrids with regard to different objectives and points of functionality. However, electrical/thermal energy costs together with the consumers’ comfort levels are not considered as two key objectives in developing an efficient energy management system (EMS) for such integrated energy systems (IESs) or any similar systems that could provide active participation of prosumers as informed users. Moreover, most of mentioned works have mainly proposed a system-level strategy for EMS design and operation which neglects the interaction between system-level components and lower-level controllers. Last but not least, very few works have considered thermal dynamics of a building unit while drawing working plan for energy management within a residential section.

In this paper, an optimal energy management model for a residential microgrid with various types of distributed energy sources and intelligent household devices is proposed. To satisfy user’s need in terms of reduced energy costs and improved comfort levels in an integrated optimisation problem, first the mathematical models of the targeted residential microgrid components are presented. Then, methods for quantitative measurements of the users’ satisfaction degrees and comfort levels are presented; and finally the optimal control policy with active participation of both generation and demand sides under various working environments and conditions will be configured and validated. The main contributions of this paper could be summarised as follows:

Variables

- \(\alpha_p \) temperature coefficient of power for a PV system (%/°C)
- \(\alpha_s \) solar absorptivity of the exposed surface (%)
- \(\beta \) blade pitch angle (deg)
- \(\gamma \) penalty factor for user’s comfort level adjustment
- \(\delta \) user’s subscription rate (%)
- \(\Delta h_{ wast } \) examined time step (h)
- \(\Delta T_{ Thi } \) threshold temperature difference (°C)
- \(\varepsilon \) emissivity of the exposed surface (%)
- \(\zeta_{1,2} \) weighting coefficients
- \(\eta_{ ch, dch } \) battery’s charging and discharging efficiencies (%)
- \(\eta_{ e, Th } \) electric and thermal efficiency of a μCHP unit (%)
- \(\eta_{ fg } \) enthalpy of water vapourisation (kJ/kg)
- \(\eta_{ motor } \) motor efficiency (%)
- \(\eta_{ h, Chl } \) heating and cooling performance coefficients
- \(\lambda \) tip speed ratio
- \(\mu_{ evap } \) evaporation rate from a body (kg/s)
- \(\rho \) air density at WT site (kg/m³)
- \(\rho_{ gas } \) natural gas price (cent/m³)
- \(\sigma \) Stefan–Boltzmann constant [W/(m²°C)]
- \(\psi \) penalty factor for user’s satisfaction degree adjustment

- \(\text{CL} \), \(\vec{E}, \vec{E}^* \) output voltage of VCM and PCM converters (V)
- \(\vec{E}_{ Chp, g} \) total gas flow into the FC and auxiliary boiler systems (m³/h)
- \(P, P^* \) active power output of VCM and PCM converters (kW)
- \(P_{ grid } \) exchanged power with utility (kW)
- \(P_{ RH } \) power consumption of a heat pump (kW)
- \(P_{ ch, BESS } \) charging power of the battery (kW)
- \(P_{ dch, BESS } \) discharging power of the battery (kW)
- \(P_{ aux, h } \) thermal power output of auxiliary boiler (kW)
- \(P_{ h, loss } \) heat loss of HWST (kW)
- \(Q, Q^* \) reactive power output of VCM and PCM converters (kVar)
- \(Q_{ fl, b } \) heat flow between the house floor and the ground (kW)
- \(Q_{ fl, i } \) heat flow between the house floor and the inside air (kW)
- \(Q_{ ig } \) internal heat gain of a building (kW)
- \(Q_{ in, a } \) heat flow between the indoor air node and the outdoor environment (kW)
- \(Q_{ occ } \) heat generated by the occupants (kW)
- \(Q_{ RH, CS } \) heat output of the RH/CS (kW)
- \(Q_{ ai } \) heat flow between the exposed surfaces and the inside air node (kW)
- \(Q_{ el } \) energy content of the HWST (kW)
- \(s_i \) binary variable showing the on/off state of appliance \(i \) at time \(h \)
- \(\text{SOC} \) occupant satisfaction degree once device \(i \) is operated at time \(h \)
- \(T_f \) house floor temperatures (°C)
- \(T_{ in } \) indoor air temperatures (°C)
- \(T_{ skin } \) average skin temperature (°C)
- \(u_{ aux } \) ON/OFF state of auxiliary boiler (1: ON, 0: OFF)
- \(u_{ BESS } \) binary variable showing the battery status (1* = charging and 0* = discharge)
- \(u_{ Chp } \) ON/OFF state of μCHP (1: ON, 0: OFF)
- \(u_{ RH } \) status of RH/CS (1*: heating, 0*: cooling)
- \(\omega_{ Chp, C } \) frequency of VCM and PCM converters (rad/s)
- \(\omega_{ g } \) measured grid frequency (rad/s)
The rest of this paper is organised as follows. Section 2 describes the configuration and specifications of the proposed system. Section 3 introduces the mathematical model of the system components. Evaluation of the proposed residential smart EMS (RSEMS) for several practical operating scenarios is performed in Section 4, and Section 5 concludes this paper and discusses future works.

2 System configuration and specification

A block diagram of the proposed integrated building and microgrid system is shown in Fig. 1. On the generation side, the main actors include the utility (power grid) and the controllable DGs such as micro-combined co-generation system (μCHP), while in demand side, schedulable appliances serve as actors.

In the proposed structure, the leading actor is the RSEMS that manages the operation of in-home devices and appliances optimally in coordination with microgrid central controller taking into account users’ objectives and existing technical/operational constraints. RSEMS also provides required information such as setpoints and reference signals for local controllers when it is needed. While the RSEMS is designed as a soft real-time system to improve and to optimise system operation during each decision period, lower-level controllers at supply/demand sides are modelled as hard real-time systems to maintain the stability. The two mentioned systems have different time granularities according to types of controlled objects and performance requirement. In the proposed microgrid, sustainable energy sources such as photovoltaic (PV) systems and wind turbines (WTs) are exploited as non-dispatchable prime movers of the mentioned system. The power grid is also used as a sustained power supply to support power demand and reference signals received from RSEMS.

3 Mathematical model of the proposed system

Optimal energy management and power control in an integrated building and microgrid system can be defined as an optimisation problem with a number of objectives and different environmental/technical constraints as described below.

3.1 Distributed energy sources

3.1.1 Renewables: The generated power from renewables such as wind and solar is based on variable sources that fluctuate during the course of any given day or season. For example, the output power for a WT depends mainly on the local wind velocity and some other parameters as follows:

$$P_{WT}(h) = C_p(\lambda, \beta)(\rho A/2)V(h)^3, \forall h \in T$$ \hspace{1cm} (1)

Similarly, the available power from a PV system at any time h can be measured as

$$P_{PV}(h) = Y_{PV}f_{PV}(G_{h}(h)/G_{STC})\left[1 + \alpha(h)(T(h) - T_{C,STC})\right], \forall h \in T$$ \hspace{1cm} (2)

3.1.2 Residential co-generation system (μCHP): In a μCHP with three subsystems including a fuel cell unit, an auxiliary boiler and a hot water storage tank (HWST), the electrical/thermal power outputs of the system can be calculated as follows: (see (3)) It is notable that the system's electrical and thermal outputs should be limited within a minimum stable generation and a maximum generation capacity limit as expressed in the third line of (3). Moreover, to avoid damaging the system, the electrical/thermal output of the unit should be changed by less than a certain amount over a period of time (known as the maximum ramp-rate constraints) which is considered in the last line of (3). Similar thermal power equation as stated in (3) together with related thermal constraints must be also considered for an auxiliary boiler.

The thermal behaviour of a HWST can be also modelled through the following equation considering the existing energy content of the system as well as all other thermal flows from/to the system

$$Q_{h}(h + 1) = Q_{h}(h) + \left(P_{C1h}(h) + P_{CHP}(h) + P_{aux}(h) - P_{G}(h) - P_{loss}(h)\right)\Delta h_{step}, \forall h \in T$$ \hspace{1cm} (4)
Based on the above equation, the reservoir temperature during each time interval can be evaluated as stated in the following equation: (see (5))

3.3.3 Electrical energy storage system (EESS): EESS for residential applications can provide reliable back-up power in case of emergency and help regulate the power supply at homes. The behaviour of a BESS can be defined as a state of charge update function as shown below: (see (6)) For the technical reason, SOC which is defined as the fraction of the total energy (or battery capacity) that has been used over the total available from the battery should be limited within a lower and upper limits [line 3 in (6)]. In a similar way, for each BESS type, a particular set of restraints and conditions related to its charging and discharging power must be met [lines 4–5 in (6)].

3.2 Model of a residential building unit in thermal zone

3.2.1 Internal heat gain (IHG): The IHGs inside a building provide a valuable source of heat contribution to space heating. The main sources of IHG include people and household equipment (sensible and latent heat gain) as well as lights (sensible heat gain only). The heat output rate of human bodies depends on the level of activity and can be expressed as

$$Q_{\text{occ}}(h) = A_{\text{cloth}}(T_{\text{skin}}(h) - T_{\text{tot}}(h)) + \mu_{\text{evap}}h_g$$

(7)

where the first term on the right side of (7) estimates combined heat transfer in terms of convection and radiation from a clothed body to the environment and the second one denotes the evaporation heat dissipation.

The IHG from lighting in a building can be estimated by summing up the number of lights of each type (N_i) and wattage (W_i), and multiplying this number by related lighting utilization (UF) and special allowance (SAF) factors as shown in the below equation:

$$Q_{\text{light}} = \sum_{i=1}^{k} N_i \times W_i \times UF_i \times SAF_i \times SF_i$$

(8)

In a same way, the heat gain from household equipment and appliances driven by electric motors within a conditioned space can be expressed as

$$Q_{\text{motor}} = P_a \times f_{\text{load}} \times f_{\text{usage}} \eta_{\text{motor}}$$

(9)

For the cooking appliances, the heat gain can be calculated based on (10) considering recommended rates of radiant and convective heat dissipation from unhooded electric appliances during ready-to-cook conditions

$$Q_{\text{cook}} = P_c \times F_r \times F_a$$

(10)

For the rest of appliances, the peak heat gain can be taken as 50% of the total nameplate ratings of them [30, 31].

3.2.2 External heat gain (EHG): The sources for EHG of a building mainly include the heating system [such as a radiant floor heating/cooling system (RFH/CS)] and solar radiation. However, other external parameters such as wind speed can contribute to the heat loss of a building due to its effect on hybrid ventilation.

The thermal energy which is added (or removed) to (or from) a space by a heating (or cooling) system can be easily evaluated knowing the system's components and their functionalities. For example, in case of a RFH/CS, the heat output of the system can be measured as

$$Q_{\text{RFH}}(h) = (\eta_h)(h)\eta_{\text{eh}}(h) - (1 - \eta_h)(h)\eta_{\text{eh}}(h)P_{\text{RFH}}(h), \quad \forall h \in T$$

s.t.

$$P_{\text{RFH}} \in [P_{\text{ref}}, 1] \quad \eta_{\text{eh}} \in [\eta_{\text{eh}}^0, \eta_{\text{eh}}^1] \quad \eta_{\text{eh}} \in [\eta_{\text{eh}}^0, \eta_{\text{eh}}^1]$$

(11)

The Sun has also a major effect on EHG of a building unit by the emission of long wavelength radiation. The solar heat gain of an exposed interior surface through a glazed area (such as the house floor on the sunny side) could be estimated as follows:

$$Q_{\text{sol}}(h) = \alpha A_I(h), \quad \forall h \in T$$

(12)

Similarly, the heat exchange at the outside surfaces of a building which are subjected to the solar radiation (such as the exposed walls and the roof) can be evaluated as follows:
The first constraint as in (17) denotes that the operation of each appliance is subject to the following power balance equation and those stated in (3)–(20).

\[
\sum_{k \in T_i} s_k(h) = \text{RT}_i
\]

\[
\sum_{k \in T_{ij}} s_k(h) - s_{k-1} \leq 2
\]

\[
\sum_{k \in T_{ij}} s_k(h) H\left(\lambda - \text{RT}_i + \sum_{k = h_u} s_k(h)\right) = \text{RT}_j
\]

\[
P_{D,h} = \sum_{k \in M} P_{D,k}(h) + \sum_{i \in N} P_{D,i}(h) s_i(h) \leq P_{D_{\max}}, \quad \forall h \in T
\]

where \(h_{\text{start}} = \min(h_{\text{start},i},h_{\text{start},j}) \) and \(\lambda \) is a positive number smaller than 1. The first constraint as in (17) denotes that the operation of each schedulable task \(i \) must be done within an allowed time range with regard to its required run time. Constraint (18) enforces the continuous operation of those appliances that are not allowed to be turned off or set to standby during their run times. Requirements for successive operation of some in-home devices (e.g. a tumble dryer as task \(j \) and a washing machine as task \(i \)) are imposed by (19), while constraint for the maximum power consumption of a house is set by (20).

3.4 Objective functions

In this work, two different objective functions are taken into account for optimal energy management and task scheduling in a grid-tied residential microgrid. The first one, which deals with the total operation cost (TOC) minimisation, is expressed as follows:

\[
\text{Min: TOC} = \sum_{h \in T} \left(\text{RT}_i(h) P_{\text{grid},h} + \rho_{\text{gas}} \left(u_{\text{CSP},h}(h) g_{\text{CSP},h}(h) + u_{\text{gas},h}(h) g_{\text{gas},h}(h)\right) \right)
\]

The first term at the right side of (21) denotes cost of electricity exchanged with the power grid at a given time \(h \) and the second term shows the natural gas consumption cost for a given building.

The second objective function aims at maximising the user's convenience and comfort level (UCCL) as follows:

\[
\text{Max: UCCL} = \xi_{\text{st}} \sum_{h \in T} \sum_{i \in N} \left(\psi_{\text{ID}} S_{\text{L},i}(h) \right) + \xi_{\text{CL}} \sum_{h \in T} \gamma \text{CL}(h)
\]

in which \(S_{\text{L},i}(h) \) and \(\text{CL}(h) \) are defined as the user's satisfaction degree about in-home task scheduling ([26, 29, 32]) and occupant's thermal comfort level ([26, 33]), respectively, and are quantified based on the distribution functions shown in Fig. 2. As it can be seen in the same figure, from a user's viewpoint, the degree of satisfaction reaches the maximum value (e.g. \(S_{\text{L},i} = 1 \)) when task \(i \) is operated within its defined DOI range, and it decreases to zero gradually as it goes beyond the desired range. In a similar way, as long as the indoor temperature is kept within the comfort range \(\left(T_{\text{inth}} \pm \Delta T_{\text{d}} \right) \), CL would be quantified as ‘1’ denoting that the occupants are fully satisfied with the thermal zone; otherwise it will be assigned lower values. It should be noted that the trade-off between SL and CL functions can be easily modified using \(\xi_i \) and \(\xi_{\text{CL}} \) weighting factors while their shape of distribution can be adjusted through the penalty factors \(\psi \) and \(\gamma \), respectively. Considering the above defined objective functions, the hybrid optimisation model is formulated as

\[
\text{Min: Mob } j = \text{TOC UCCL}^{-1}
\]

subject to the following power balance equation and those stated in (3)–(20).
\[P_{\text{grid}}(h) + P_{\text{CHP}}(h) + \delta \cdot (P_{\text{WT}}(h) + P_{\text{PV}}(h)) - P_{\text{BESS}}(h) = P_D(h), \quad \forall h \in T \]

where \(\delta \) denotes the energy share of each household from sustainable energy sources within the residential microgrid according to the ratios of investment.

3.5 Master–slave control of energy sources

The lower-level control structure (here named as ‘master–slave”) of the existing DG sources is depicted in Fig. 3.

CL

- \(\gamma' > \gamma > \gamma'' \)
- \(T_{\text{in}} \) to \(T_{\text{out}} \)
- \(h \in\{h_1, h_2, h_3\} \) - DOI

SL

- \(\psi' > \psi > \psi'' \)
- \(h \in\{h_1, h_2, h_3\} \)

Fig. 2 Definition of user’s satisfaction level and thermal comfort level

- (a) Thermal comfort level
- (b) Satisfaction degree

Based on this control structure, each controllable DG is treated as a ‘grid-following’ unit and operated in power control mode (PCM) to follow a power reference \((P^*) \), while the utility (which is the master unit) is operated in grid-forming mode (VCM) to maintain the voltage and the frequency within the range. In this regard, droop control is implemented based on (25) and (26) in primary loop for the master unit, and reverse droop controller is utilised for the slave units as expressed in (27)

\[
\omega = \omega^* - n_m P \tag{25}
\]

\[
E = E^* - n_d Q \tag{26}
\]

\[
Q' = (1/n_r) \cdot (E' - E_g) \tag{27}
\]

It should be mentioned that within the proposed structure, the inner-loop control of VCM aims at achieving good output voltage regulation with respect to determined capacitor voltage reference while the inner-loop control of PCM regulates the output power. For both inner loops typical proportional–integral controllers are appropriately designed and used. In the primary control loops, low-pass filters are also applied to limit the loop bandwidth, so that the primary control can be separately designed and the inner loop of VCM and PCM can be considered as ideal voltage and current sources, respectively [32].

4 Simulation results and discussions

The performance of the proposed optimal dispatching model is evaluated through different simulation case studies and relevant results analysis. As shown in Fig. 1, the case study is configured as an integrated building and grid-tied microgrid system with operating parameters described in Table 2 and shown in Fig. 4. The building unit design and construction characteristics are also adopted from [33]. With regards to the proposed lower-level control structure of the dispatchable DG sources, the control system parameters are shown in Table 3. For the examined
residential section and according to the demand profile of the household loads as well as its occupancy behaviour, the IHG is also estimated based on (7)–(10) to be 3.5 W/m².

Likewise, the maximum allowable power exchange between the utility and the house under RTP is limited to 5.5 kW during each time slot. Other required data such as meteorological information and energy prices for the study time and location are also collected from [39–41]. It should be mentioned that the simulation platform is implemented in MATLAB Simulink® and General Algebraic Modeling System (GAMS) is incorporated as computation engine for optimisation tasks.

Fig. 5 illustrates the performance comparison of the proposed RSEMS with a conventional EMS (CEMS) in terms of different objectives. It is noteworthy that a CEMS schedules in-home tasks economically and keeps the indoor temperature within the comfort zone \(i.e. \zeta_2 \text{ is set to unity in (22)} \); however, it does not consider user's preferences in energy scheduling \(i.e. \zeta_1 \text{ is set to zero in (22)} \).

Table 2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT generator</td>
<td>(\rho)</td>
<td>1.18</td>
</tr>
<tr>
<td>(v_{\text{survival}})</td>
<td>60</td>
<td>m/s</td>
</tr>
<tr>
<td>PV system</td>
<td>(G_{\text{STC}})</td>
<td>1</td>
</tr>
<tr>
<td>(\alpha_D)</td>
<td>-0.44</td>
<td>%/°C</td>
</tr>
<tr>
<td>Residential (\mu \text{CHP})</td>
<td>(P_{\text{e}}, P_{\text{aux}})</td>
<td>0.3, 1.5</td>
</tr>
<tr>
<td>(V_{\text{rot}})</td>
<td>77</td>
<td>%</td>
</tr>
<tr>
<td>(R_{\text{gen}})</td>
<td>25</td>
<td>°C</td>
</tr>
<tr>
<td>Battery-based EESS</td>
<td>(E_{\text{BESS}})</td>
<td>24</td>
</tr>
<tr>
<td>(P_{\text{eb}}, P_{\text{ch}})</td>
<td>3.3, 3.3</td>
<td>kW</td>
</tr>
<tr>
<td>RFH/CS</td>
<td>(P_{\text{RFH}})</td>
<td>2</td>
</tr>
<tr>
<td>(\eta_{\text{e}}, \eta_{\text{dch}})</td>
<td>100, 400</td>
<td>%</td>
</tr>
<tr>
<td>(\Delta T_{\text{th}, \text{hot}})</td>
<td>±3</td>
<td>°C</td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>Type</th>
<th>Parameters</th>
<th>Symbol Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>electrical parameters</td>
<td>rated PCC voltage</td>
<td>(V^*)</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td>system frequency</td>
<td>(f^*)</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>LCL filter capacitance</td>
<td>(C)</td>
<td>2200</td>
</tr>
<tr>
<td></td>
<td>VCM filter inductance</td>
<td>(L_{\text{in}})</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>PCM filter inductance</td>
<td>(L_{\text{T}})</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>output impedance</td>
<td>(L_{\text{O}})</td>
<td>0.1</td>
</tr>
<tr>
<td>inner loops and droop control</td>
<td>voltage proportional term</td>
<td>(k_{\text{v}})</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>voltage integral term</td>
<td>(k_{\text{V}})</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>current proportional term</td>
<td>(k_{\text{pl}})</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>current integral term</td>
<td>(k_{\text{il}})</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>frequency droop</td>
<td>(m_{\text{q}})</td>
<td>0.003 rad/s/W</td>
</tr>
</tbody>
</table>

residential section and according to the demand profile of the household loads as well as its occupancy behaviour, the IHG is also estimated based on (7)–(10) to be 3.5 W/m².

Likewise, the maximum allowable power exchange between the utility and the house under RTP is limited to 5.5 kW during each time slot. Other required data such as meteorological information and energy prices for the study time and location are also collected from [39–41]. It should be mentioned that the simulation platform is implemented in MATLAB Simulink® and General Algebraic Modeling System (GAMS) is incorporated as computation engine for optimisation tasks.

Fig. 5 illustrates the performance comparison of the proposed RSEMS with a conventional EMS (CEMS) in terms of different objectives. It is noteworthy that a CEMS schedules in-home tasks economically and keeps the indoor temperature within the comfort zone \(i.e. \zeta_2 \text{ is set to unity in (22)} \); however, it does not consider user's preferences in energy scheduling \(i.e. \zeta_1 \text{ is set to zero in (22)} \).
It is clearly observed from case-study simulations that the proposed methodology outperforms the conventional way of energy management. In case of a CEMS, although it collects the RTP information and realises a penny-wise dispatch pattern to lowering down the energy costs, it fails to meet the user's satisfaction. On the other hand, the hybrid objective function (Mob, j) that includes both energy cost and comfort levels improves considerably (up to 29 and 33% in hot and cold weather conditions, respectively) using the proposed RSEMS. It can be also seen from the numerical results that the performances of RSEMS and CEMS are very competitive to one another in terms of energy consumption cost reduction, which implies that RSEMS has the capability to dispatch the schedulable consumption and generation in a way not only to conserve energy within the building, but also to fulfill the inhabitants’ needs in terms of UCCL index. It is also noteworthy that the running time of the proposed model is <4 s under different operating conditions, which makes it applicable for a real EMS system with selective time intervals from 1 min to 1 h. It can be also understood from the results that RSEMS optimal portfolio slightly changes in the hot and cold weather conditions, mainly because of the building IHG as well as EHGs, which in turn affects the cooling/heating capacity of the system and energy management policy of the controllers.

To have a better understanding of the proposed EMS performance, computer simulations regarding optimal operation management of schedulable tasks and DG units are depicted in Fig. 6 for a hot summer day. As it can be observed from the optimised dispatch profile, operating behaviours of the units change during different times of a given day. For example, when the electricity price is relatively low, the power grid supplies majority of the residential demand and the BESS is charged accordingly with lower cost. However, during peak-price hours the controllable DGs are involved more in the generation mix not only to supply the load economically, but also to sell extra power into the power grid for making more profits. On the demand side, the operating times of the tasks are also scheduled in a way to meet both the constraints and the user's objectives. As an illustration, for two household appliances such as washing machine and tumble dryer, the successive operation is planned effectively by RSEMS to meet the user's preferences as defined in (16) and (22) and shown in Fig. 4, and to satisfy the requirements enforced by (17), (19) and (20).

In this case study, the lower-level master–slave control of the energy sources is also enabled effectively in coordination with the system-level optimisation. As can be seen in Fig. 7, the power utility, which serves as a grid-forming unit, keeps the frequency within an acceptable range and holds a good output voltage regulation by the use of dedicated controllers; however, other available controllable DGs that paly as slave units try to regulate their output powers based on the reference signals received from the RSEMS.

Fig. 8 shows the simulation results for the case where the μCHP system is optimally controlled to meet the hot water needs of the residents in a given day. Likewise, Fig. 9 illustrates the performance of the optimal control system as applied to the heating/cooling scenarios for the given building in different weather conditions. From the related simulations, it is observed that the operations of RFH/CS and μCHP systems are managed optimally by the RSEMS with regards to the user's comfort level, hot water needs and the existing constraints for these units.

The thermal behaviour of the building in different weather conditions is illustrated in Fig. 9. As it can be observed, heat can be easily exchanged between the indoor air and the outdoor environment based on the temperature differences in these nodes, which in turn affects the heating/cooling load of the building.

For example in summer time and during hot days, not only the heat from the direct sunlight warms up the house (by increasing Q_{sf}...
heat flow as described in (12) and accordingly increasing the floor temperature based on (15), but also the thermal flows from the exposed exterior surfaces such as walls and the roof will contribute to the heat gain of the building all day long (i.e. \(Q_s\) heat flow in Fig. 9). For this reason, the RFH/CS operates more in the cooling mode (i.e. negative \(Q_i\) heat flow which denotes heat absorption by the floor through cooling operation of the RFH/CS system) to satisfy the desired body comfort. On the contrary, due to the lower outside temperature in winter times (see temperature profiles in Fig. 9b), most of the heat is transferred through the building structures to the outdoor ambient (i.e. positive \(Q_{io}\) and \(Q_{fo}\) heat flows) thus enforcing the RFH/CS to produce more heat (i.e. positive \(Q_f\) heat flow) and to keep the thermal comfort range for the inhabitants (i.e. the operative indoor temperature range of 23–27°C as defined by user). It is noteworthy that in such weather condition, both the IHGs and EHGs of the building are contributing positively to the heat gain of the building during the day and therefore mitigating the running cost of the system for heating purposes. This can be easily understood from Fig. 9 by comparing the RFH/CS performance during the study period under different weather conditions in terms of the total operating times and the energy consumption. It should be noted that the IHG has been estimated based on (7)–(10) to be 3.5 W/m² of floor area averaged.
over the study period according to the demand profile of the examined household loads and occupancy.

5 Conclusion and future works
In this paper, an efficient EMS for applications in sustainable buildings and microgrid system was described, mathematically modelled and validated in different operating conditions. The proposed framework which was developed as integration of a system-level optimiser and lower-level controllers, encompassed various thermal/electrical models for heat exchange within a residential building as well as load scheduling potentials of household appliances with associated constraints. Moreover, it integrated different means of heat and electricity generation into a residential microgrid and provided an optimal dispatch model of the corresponding units under various working scenarios. It was demonstrated through the computer simulations that the proposed EMS has the capability to reduce domestic energy usage and improve the user’s satisfaction degree and comfort level taking into account real-time system’s constraints and deadlines. Compared with a CEMS, the proposed scheme could also track the electricity usage by the hour and find the most efficient solution to supply the demand and/or shift (load) activities into time frames when the user’s utility is the highest.

Further research is needed to investigate more real smart buildings settings and preferences. We also need to study and exploit suitable statistical models of uncertain parameters and apply them in operation management of residential microgrids in order to make the best decisions on average. Moreover, there is a need to incorporate error handling mechanisms to anticipate, detect and resolve errors during metering, sensing and communication processes. In future works, we will also carry out more experiments on larger test systems and investigate the effectiveness of our proposed architecture in a multi-agent-based simulation environment.

6 References