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The progressive application of Information and Communication Technologies to industrial processes has
increased the amount of data gathered by manufacturing companies during last decades. Nowadays
some standardized management systems, such as ISO 50.001 and ISO 14.001, exploit these data in order
to minimize the environmental impact of manufacturing processes. At the same time, microgrid archi-
tectures are progressively being developed, proving to be suitable for supplying energy to continuous
and intensive consumptions, such as manufacturing processes.

In the merge of these two tendencies, industrial microgrid development could be considered a step
forward towards more sustainable manufacturing processes if planning engineers are capable to design a
power supply system, not only focused on historical demand data, but also on manufacturing and envir-
onmental data. The challenge is to develop a more sustainable and proactive microgrid which allows iden-
tifying, designing and developing energy efficiency strategies at supply, management and energy use levels.

In this context, the expansion of Internet of things and Knowledge Discovery in Databases techniques will
drive changes in current microgrid planning processes. In this paper, technical literature is reviewed and this
innovative approach to microgrid planning is introduced.

& 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

During 2008, the world's companies processed 63 terabytes of
information annually on average and the world servers processed
12 gigabytes of information daily for the average worker (about
3 terabytes of information per worker per year) [1]. For sure
Internet has changed the amount of data available for companies.
Following this technological evolution (towards data acquisition,
transmission and storage) new concepts have appeared around
computer-based science in business environments. Internet of
things (IoT) is perhaps one of the trending topics in this field
nowadays. Many authors have approached it since this term arose
in 1999. For example F. Mattern and C. Floerkemeier affirm in [2]
that IoT represents a vision in which the Internet extends into the real
world embracing everyday objects. Physical items are no longer dis-
connected from the virtual world, but can be controlled remotely and
can act as physical access points to Internet services.

Hence, it can be expected that the progressive connection of
everyday objects to internet will be used to remotely determine
their state so that information systems can collect up-to-date infor-
mation on physical objects and processes [2]. Also devices should be
able to communicate each other, and to develop a certain level of
intelligence. The IoT vision is grounded in the steady advances in
electronics, communications and information technologies. Due to
their diminishing size [3], falling price and declining energy con-
sumption, processors, communications modules and other elec-
tronic devices are being increasingly integrated into everyday
objects. Main objectives of the integration of this kind of devices
are data gathering, measuring and communication. Perera et al.
identify smart grid, smart homes and smart industries between
main contributors to smart products sales market by 2016 [4].

As J. Short et al. point out in [1], there exist some differences
between two related concepts: data and information. Since data are
collections of numbers, characters, images or other outputs from
devices that represent physical quantities as artificial signals intended
to convey meaning, they define information as a subset of data,
considering data as the lowest level of abstraction from which
information and knowledge are derived. During the period from
1986–2007, general-purpose computing capacity grew at an
annual rate of 58%, and the world’s capacity for bidirectional tel-
ecommunication grew at 28% per year, closely followed by the
increase in globally stored information (23%) [5].

KDD is essentially the process of discovering useful knowledge
from a collection of data. A. Berstein et al. also define KDD as the
result of an exploratory process involving the application of various
algorithmic procedures for manipulating data, building models from
data, and manipulating the models [6]. The exponential grow of the
amount of data in many systems, no longer allows the manual
search of underlying patterns, as it used to be. The main objective of
KDD is to extract high-level knowledge from these low-level infor-
mation, or in other words, to automatically process large quantities of
raw data, identify the most significant and meaningful patterns, and
present these as knowledge appropriate for achieving the user goals
[7]. Relationship between KDD, IoT and Data Mining (DM) is
described in an accurate way by N. Ramakrishan in [8]:

� IoT collects data from different sources, which may contain data
for the IoT itself.

� KDD, when applied to IoT, will convert the data collected by IoT
into useful information that can then be converted into
knowledge.

� DM is responsible for extracting patterns or generating models
from the output of the data processing step and then feeding
them into the decision-making step, which takes care of
transforming its input into useful knowledge.
There are critical steps along a KDD process. Yoong and Ker-
schberg assert in [9] that knowledge discovery critically depends
on how well a database is characterized and how consistently the
existing and discovered knowledge is evolved. The step definition
of the KDD process can also have a strong impact on the final
results of mining. For example, not all the attributes of the data are
useful for mining. The consequence is that DM algorithms may
have a hard time to find useful information if the selected attri-
butes cannot fully represent the characteristics of the data [8]. DM
is described by Fayad et al. in [10] as a step in the KDD process that
consists of applying data analysis and discovering algorithms that
produce a particular enumeration of patterns (or models) over the
data. But every DM process requires a previous data processing
step, also defined by Fayad et al. as data warehousing (DW). DW
refers to collecting and cleaning transactional data to make them
available for online analysis and decision support. DW helps set the
stage for KDD in two important ways: data cleaning and data
access.

Typical KDD process includes five general stages: selection,
pre-processing, transformation, data mining and evaluation. But,
instead of being based in the same principles, different authors
propose different KDD processes. Fayad et al. [10] define KDD as an
iterative and interactive process based in nine steps such as:

� Developing an understanding of the application domain and the
relevant prior knowledge and identifying the goal of the KDD
process from the customer’s viewpoint.

� Creating a target data set.
� Data cleaning and pre-processing.
� Data reduction and projection
� Matching the goals of the KDD process to a particular data mining

method.
� Exploratory analysis and model and hypothesis selection.
� Data mining.
� Interpreting mined patterns.
� Acting on the discovered knowledge.

M. Last et al. introduce a specific time series databases KDD
process [11] based on seven stages: data pre-processing, feature
extraction, transformation, dimensionality reduction, prediction
and rule extraction. A review on time series DM techniques is
also presented by Fu [12]. Between mining tasks he highlights
pattern discovery and clustering but also classification, rule
discovery, summarization and other recent research directions.
Finally, a deep review of 13 different KDD process models is
presented by Kurgan and Musilek in [13]. Analyzing these KDD
methodologies, data preparation can be considered the founda-
tion, while DM can be considered as the pillar of KDD. The
existence of similar, but at the same time different KDD
methodologies makes sense since:
KDD techniques have not been widely applied to manu-
facturing processes, neither standardized yet.
KDD techniques are based on optimization problems between
different alternatives, under different constraints and towards
different goals depending not only on the characteristics of the
manufacturing process, but also on environmental, social and
legal conditions: there are some aspects in a KDD-based
approach that might not be standardized.
On the basis of KDD, a growing body of emerging applications
is changing the landscape of business decision support [14] such
as: risk analysis, targeted marketing, customer retention [15],
portfolio management and brand loyalty [16]. Traditional DM
approaches have proven to be efficient on modeling variables of
interest, so that these variables may be forecasted in future sce-
narios, and effective decisions taken based on that forecast. DM
technologies are reviewed, described and classified [8] into
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clustering, classification, and frequent patterns mining technologies,
from the perspective of infrastructures and from the perspective of
services by Tsai et al. They point out that most KDD systems avail-
able today and most traditional mining algorithms cannot be applied
directly to process the large amount of data of IoT. In this line of
work, they define three key considerations in choosing the applicable
mining technologies for the problem to be solved by the KDD tech-
nology: objective, characteristics of data, and mining algorithm. In
other words, whether or not to develop a new mining algorithm
can be easily justified by using these factors. Regarding mining
algorithms, heuristic [17–20] and metaheuristic algorithms [21]
are called to be trending techniques in order to solve a variety of
mining and optimization problems in [22].

Perhaps one of the most important aspects in DM problems is
how to evaluate a candidate model, and, obviously, this question
depends on the type of DM task at hand. Thus, most of the DM
problems can be thought of as optimization problems, where the aim
is to evolve a candidate model that optimizes certain performance
criteria. However, the majority of DM problems have multiple
criteria to be optimized. Hence, most of the DM problems are multi-
objective in nature. Multiobjective evolutionary algorithms for DM
are surveyed in [23,24] into different categories regarding the DM
task they face: feature selection, classification, clustering, asso-
ciation rule mining and other tasks. A collection of stages for a
general KDD process is summarized in Fig. 1.

In addition, it must be highlighted that the application of KDD
strategies not only requires technical but also human resources
(qualified workers). It can be an intensive process regarding time
and resources, and sometimes some of the optimal solutions can
result obvious or simply incompatible with the manufacturing
process (even with maintenance criteria or environmental goals).
For example, the fewer units manufactured the less energy spent
and the less environmental impact it is caused. Another possible
recommendation could be to switch off a manufacturing process
with a high thermal inertia, following energy saving criteria. But
this action can sometimes be incompatible with manufacturing
and quality goals, for example. Thus, the identification of effective
scenarios for the application of these techniques (regarding costs and
benefits) is one of the main areas of development nowadays.

KDD field is in continuous evolution towards the direction
pointed out by Cios and Kurgan in [25]. The future of KDD and DM
process models is in achieving overall integration of the entire pro-
cess through the use of other popular industrial standards. Another
currently very important issue is to provide interoperability and
compatibility between different software systems and platforms,
which also concerns KDD and DM models.

As a conclusion, it can be asserted that KDD systems will help
in achieving a higher-level automation of manufacturing pro-
cesses, less assisted by manpower with higher professional qua-
lification. Nowadays every manufacturing company has adopted
ICT-based architectures. But, as it will be described below, the
growing application of IoT-based strategies in manufacturing
companies will be a valuable source of additional data, also
regarding microgrid (MG) planning. Hence, combined planning
approaches for energy supply and manufacturing process are
expected to be able to reduce environmental impact, under eco-
nomic profitability conditions. This paper introduces a MG planning
approach for industrial companies from a Knowledge discovery in
databases (KDD) point of view.
2. KDD techniques applied to manufacturing processes

Industrial production accounts for 16% of Europe’s gross
domestic product and remains a key driver for innovation, pro-
ductivity, growth and job creation. In 2009, 31 million people were
employed in the European Union manufacturing sector, and each
job in manufacturing generates at least an additional job in ser-
vices [26]. Research on manufacturing processes improvement is a
critical issue for European Union government. The point of departure
of recent approaches is technological evolution in Information and
Communication Technologies (ICTs). Data acquisition, commu-
nication, and decision-making based on the acquired data are
essential functions in modern manufacturing processes nowadays.
That is the reason why Bi et al. affirms that the IoT is able to provide
solutions to planning, scheduling, and controlling of manufacturing
systems at all levels, due to the close relations of the components in
a manufacturing enterprise and the architecture of IoT [27].

New manufacturing-oriented IoT architectures have been pro-
posed in recent years. Said and Masud review in [28] IoT archi-
tectures pointing a three and a five level architecture, including:

� Business layer defines IoT applications charge, management and
users privacy.

� Application layer: determining the type of applications that will
be used in the IoT.

� Processing layer is the responsible of processing the information
gathered by perception layer.

� Transport layer receives and transmits the information from the
perception layer to the processing layer and vice versa.

� Perception layer contains the technology used in the IoT, gath-
ering information from field devices and transforming this data
to signals.

A similar IoT architecture is illustrated in [27], classifying
manufacturing components in three different levels and compar-
ing them to IoT levels: machines and devices (ubiquitous com-
puting), enterprise application (grid computing) and virtual
enterprise and enterprise alley (cloud computing). Analyzing these
architectures, it can be asserted that the future vision of industrial IoT
is yet to be defined.

Based in these non-standardized architectures, IoT-based
industrial applications are growing up strongly. For example, a
farm operation monitoring system is proposed by Fukatsu and
Nanseky in [29]. This system is based in “Field Servers” and a
wearable device equipped with an RFID reader and motion sen-
sors. They not only monitor the field environment, but also crop
growth, insect infestation, and simple field operations controlling
and measuring various sensors including some cameras. Da et al.
also review some industrial applications for IoT, such as vigilance
of workplace safety and food supply chain. They also cite some
worksite safety management tasks such as disaster signals
supervision in order to make warning, risk forecasting, and safety
improvement of production in the mining field. In the food
industry some IoT applications have been developed in order to
add traceability capacities to the food supply chain: from precise
agriculture, to food production, processing, storage, distribution, and
consuming [30]. A novel enabling-approach of IoT for manu-
facturing processes is the virtual factory approach, in which dif-
ferent manufacturing processes can be modeled and executed as if
they are being carried out in a single factory. Virtual factory
management involves 4 steps: process definition, process fore-
casting and simulation, process execution and real-time monitor-
ing. ICTs and IoT support is essential to success [31] in this process.

Under this context, data use is expected to grow in manu-
facturing processes, but only under cost efficiency criteria and goal-
oriented. Several information from productive process variables
remains in databases, which at the end, store huge amounts of
historical data. As a consequence, KDD techniques have a growing
market in the field of manufacturing processes optimization and
decision-making. A framework for implementation of KDD pro-
jects in firms is applied to the Indian company Ramco [32].
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Authors divide this process into 10 steps, shaping 3 stages: stra-
tegic groundwork, data analytics and implementation. Knowledge
from databases should not only be extracted, but also capitalized:
efforts should be oriented towards cost critical issues and KDD
process should be embedded into every company daily proce-
dures. Following this guidelines, a novel KDD methodology is
developed towards modeling the knowledge requirements and the
associated tasks for collecting the knowledge simultaneously in a
company by Tseng and Huang in [33].

The concept of networking devices to achieve higher levels of
automated interaction is also driving changes in industrial net-
working. In addition to DM, (which is more focused on the auto-
mated analysis of large data in order to discover patterns and
models that can be applied to forecasting and decision-making
tasks), other mathematical disciplines, such as Machine Learning
(ML), can help manufacturing industries to raise their perfor-
mance. ML is focused on the construction and study of algorithms
that can learn from data in order to adapt the behavior of a device
to their environment (including their users). Main differences and
similarities between these subfields are presented in [34]. Pan and
Yang summarize the relationship between traditional ML and
various transfer learning settings and categorize transfer learning
under three sub-settings, inductive transfer learning, transductive
transfer learning, and unsupervised transfer learning [35]. Addi-
tionally, a combination of DM and ML approaches (cycle-time
factor identifying and predicting) in semiconductor manufacturing
is presented in [36] with decision support purposes.

KDD applications to manufacturing processes have been
reviewed in some papers such as [37–40]. Specially Liao et al.
present a deep review on papers published from 2000 to 2011.
Some of the most common applications and techniques will be
mentioned below, allowing the reader to make a quick overview of
this field.

KDD techniques application to manufacturing processes usually
address the search of correlations between process variables [41–
44] among production process data and control parameters. The
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discoveries of these correlations allow planners to incorporate the
generated knowledge into a model of the manufacturing process,
which can be exploited with multiple purposes. Since a manu-
facturing process is controlled in order to obtain a product with
defined characteristics, a common application of these models is
to identify critical parameters in order to get a better control of
(and even forecast) the results of the manufacturing process. For
example, DM techniques are proposed to study product variances
in [45–48]. Moreover, the results of different control strategies or
parameters are finally verified by quality control department.

Due to advances in data collection systems and analysis tools,
DM has widely been applied for quality improvement in manu-
facturing and have been reviewed in [49] by Köksal et al.. Many
papers afford quality issues using DM techniques [50–63]. Among
them, semiconductor and electronics manufacturing can be con-
sidered a hot topic [51,53,58,59,61,63]. Quality problems together
with new capabilities usually influence the design process of new
products. DM techniques are used this process, such as it is
described in [64] for a case of a motherboard design and assembly
in a personal computer manufacturing process.

Not only quality but also energy and requirements for manu-
facturing processes have been addressed with DM techniques. The
research on the process control and the energy saving of the alu-
minum electrolysis industry have inspired new specific DM algo-
rithms [65]. Also Kusiak and Shong describe the existence of three
different DM-based approaches to optimization of combustion
efficiency: analytical models based on thermodynamics and
chemistry, soft computing and hybrid systems [66]. Optimization
DM-based models for improvement of a boiler–turbine system
performance are formulated in [67,68]. In both papers historical
process data are mined and the discovered patterns are selected
for performance improvement of the system.

There is no doubt about the development or the innovative
combination of techniques, enabling new approaches to KDD
problems. Demand for real-time processing, on-demand proces-
sing as well as the in-transit processing of standard remote sen-
sing data products are some of the development opportunities
[69] in this field. At the same time, new manufacturing equipment
is expected to be capable of (at least) reading and storing some
basic data about their activity related with production, energy,
time and other process-related parameters. This connected
approach to manufacturing process management is very suitable
to the IoT strategies application. Among manufacturing companies,
the growing use of condition-based monitoring is widely accepted
(if not always implemented) with different purposes such as
maintenance, production quality and energy management opti-
mization. Taking the idea a step further, manufacturers are looking
forward to connect all these devices with higher decision-making
levels [32]. This plant (or even multiple plant) connectivity from
the device (or field) level to the enterprise (or decision-making)
level connection involves connecting industrial devices to Manu-
facturing Execution Systems (MESs), Energy Management Systems
(EMSs) or Enterprise Resource Planning systems (ERPs).

The challenge for the application of DM and ML techniques (as it is
for the optimization techniques they are based on) is on achieving an
optimal solution under not only technical and economical constraints,
but also fulfilling environmental, social and other constraints of the
manufacturing process. As it has been described in the previous
section, data mining optimization processes sometimes results in
non-viable or incompatible solutions. That is the main reason why
constraints for manufacturing process have a very important role
along the planning process. Following Fig. 1, constraints must be
defined during objective definition stage and their fulfillment must
be evaluated at Knowledge extraction and evaluation stage.

Some of the state, control variables and decision-making variables
included in Fig. 2 will be processed as constrains along an optimization
process (usually multi-objective optimization as it has been cited in
Section 2). Among this variables there can be highlighted:

� Manufacturing equipment: units available, load status, main-
tenance status, energy consumption and environmental impact.

� Ancillary services: units available, load status, maintenance
status, energy consumption and environmental impact.

� Production control: short term demand, production schedule
and goals achievement.

� Quality control: data related with the fulfillment of quality
standards.

� Environmental impact: exhaust gas emissions, waste materials
and water consumption.

� Climatic and renewable resources data: potential wind capacity,
solar irradiation, temperature and humidity.

� Energy market: power grid prices and energy costs for different
microgrid planning scenarios.

� Warehouse status: raw materials and final product availability
regarding short term requirements of manufacturing process.

� Legal and financial: future policies can make optimal scenarios
for a manufacturing process change. Fund availability can also
oscillate in order to face regular costs or additional investments.

� Sales and purchasing: raw materials supply regarding present
and future sales (forecasting).

� Human resources: manpower planning, availability and costs.

Environmental and Energy Management Systems (ENMSs and
EMSs) have claimed their role in industrial companies during last
decades, mainly due to changes in environmental policies and to
the raise of energy costs. More than 4.800 EMSs based in ISO
50.001 were certificated (a growth of 116% in a year) in 78 coun-
tries up to the end of December 2013 [70]. During 2014 the cer-
tification of this kind of systems raised up to 6.788, an additional
40%. At the same time, certified ENMSs based on ISO 14.000 grew
in 2014 up to 324.148, (a 7% in a year) as the consolidated standard
it is for evaluation and improvement of environmental policies. A
new version of ISO 14.000 standard has been released in 2015.
Certificated EMSs could be expected to keep growing during next
years between a 15–20% per year, since they have many points in
common with other quality or environmental international stan-
dards (such as ISO 14.000) and energy represents a major cost for
many manufacturing processes (up to 80% for frozen processed food
industry, or up to 70% for glass bottle manufacturing, for example).

Both ENMSs and EMSs are based on ICTs and software tools
which track the use of energy and raw materials. At the same time,
ENMSs quantify environmental impact using data, for example, of
water consumption or emission of exhaust gas. The key perfor-
mance indicators (KPIs) used by both systems support managers
along the process of defining the environmental and energy per-
formance of the manufacturing process, and also identifying
improvement and saving opportunities. The aforementioned
appearance of innovative architectures and techniques (such as IoT
and DM) makes it possible for these systems to evolve quickly
towards forecasting, modeling and optimizing capabilities. Corre-
spondingly, the point of smart industries is not only on connecting
smart devices each other, but also on using gathered information in
order to model and optimize a manufacturing process. This is the
natural evolution of manufacturing management systems such as
MES, EMS and ERPs. In a short period of time, data acquisition,
communication and analysis tools are expected to become
essential functions for these systems, and KDD techniques are
expected to take part of integrated manufacturing management
systems, assisting company managers along decision-making
processes. Some tries of DM-based applications have been devel-
oped regarding energy efficiency for industrial companies, such as
an energy audit web-based application [71]. But there is a still a lot



Fig. 2. Microgrid planning process scheme.
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of work to do in order to integrate KDD techniques into future
manufacturing management systems.
3. MG as sustainable energy supply system for manufacturing
processes

The power grid, it is widely agreed, is the next big thing in com-
puting [72]. Nowadays, it can be said that the traditional electrical grid
has achieved quality and quantity supply goals (from the conven-
tional and renewable generation of electricity, to power transporta-
tion and distribution), but it has to improve substantially from the end
user point of view and the functionalities expected of it. At each step
along the way, large (and growing) data volumes are created by
energy-related industrial or even domestic equipment. In this con-
text, KDD techniques are suitable to improve the overall efficiency of
an energy supply, or additionally to support the development of new
services for energy consumers. This concept can be applied not only
to improve electrical networks performance but also to manage the
actions of all the systems connected to them (those which generate
electricity, which use electricity and which take both actions).
Therefore, IoT architectures and KDD techniques are expected to drive
the evolution of power systems into smart systems. Moreover, the
visions of smart grids and IoT have recently been combined into the
concept Internet of Energy (IoE) [73]. There is a global effort to
incorporate sensors, actuators and data networks into power grids.
This IoT application to power grids offers deep monitoring and con-
trols, but needs advanced analytics over millions of data streams for
efficient and reliable operational decisions [74].
Analytic tools and applications have a growing importance in
every power system. The analytics layer covers the new solutions
that vendors are bringing to the market [75]. In the smart grid space,
there are three domains that will increasingly rely on analytics:
the enterprise, grid operations and consumer analytics.

� Enterprise analytics are focused on moving from traditional
historical analytics to real-time predictive analytics, complete
situational awareness, business intelligence, real-time visualiza-
tion and simulation of the grid

� Grid operations analytics are focused on grid optimization and
operational intelligence, asset management analytics, crisis
management analytics, decision-making analytics, outage man-
agement analytics, weather and location data, mobile workforce
management and energy theft.

� Consumer analytics are focused on behavioral, demand
response, load flow and distributed generation analytics, and
social media data integration.

At the same time, data infrastructure and data management
enables smart capabilities for power systems, providing data to
analytics. A cloud-based software platform for data-driven smart
grid management is presented in [74] by Simmhan et al. But cloud
services to smart things may face latency and intermittent con-
nectivity. In this context fog devices are introduced in [76], between
cloud and smart devices. Their main advantage is the high-speed
Internet connection to the cloud, and physical proximity to users,
enabling real-time applications. For example, a demand response
management algorithm can be implemented with a cloud
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computing approach, but the bandwidth cost would be high if each
supplier and customer communicates directly with the cloud.

As it has been cited before, analytics are the foundation of some
advanced features development, such as self-healing, mutual
operation and participation of the users, electricity quality, dis-
tributed generations and demand response, sophisticated market
and effective asset management [77]. KDD applications to power
systems based in those analytics have been reviewed by different
authors in 1997 [78], 2006 [79], 2009 [80] and 2014 [81]. A com-
parison between these papers regarding year, number of refer-
ences and applications is presented in Table 1. Perhaps the most
complete review among them is the one by Kazerooni et.al. [81].
They present a classification of four major areas of data mining and
related works in power systems: visualization, clustering, outliers
detection and classification. At the same time these applications
could be divided into utility-side (electricity generation and dis-
tribution) and demand-side (energy consumption). Not only utility
managers are willing to be able to exploit KDD-based cost-saving
opportunities. Customers are also willing to use friendly control
devices, and to consume and control energy generation from
environmental-friendly Distributed Energy Resources (DER). Fol-
lowing this approach a wireless communication network to sense,
estimate and control DER states is proposed in [82] by Rana and Li.
Smart meters are a key element in order to develop this demand-
based approach, since they are a powerful source of consumption
data. These meters are increasingly replacing traditional meters
and measuring a detailed profile of consumption data. With such
data, utility companies are in possession of the raw material
needed to improve efficiencies and customer services [83]. Intel-
ligent use of data from smart meter allow power grid planners to
develop deeper electricity consumption analysis [84]. A wide
range of modeling, simulation and forecasting tasks can be applied
in order to develop scheduling strategies, making power equip-
ment work at higher performance levels: identifying low effi-
ciency scenarios and supporting improvement strategies.

Environmental impact of manufacturing processes can be mini-
mized developing advanced MG systems, not only due to the
improvement of energy efficiency. For example, energy consumption
for some critical ancillary services o manufacturing equipment
could be supported by renewable power sources in order to
increase the reliability and minimize the environmental impact of
the systems. There can be found profitable applications for
renewable power sources regarding environmental and econom-
ical aspects in almost every manufacturing process, especially
under self consumption strategies. Net metering strategies could
also be studied in some special cases such as manufacturing pro-
cesses with low power capacity demands, photovoltaic or wind
Table 1
KDD applications to power systems in review papers since 1997.

Authors Citation
number

Year Referenced papers KDD-based

S.Madam, W.Son and K.
Bollinger

[78] 1997 9 Prediction

H.Mori [79] 2006 50 Security as
trol, econo
state estim

Z. Vale et al. [80] 2009 20 Demand re
M. Kazerooni et al. [81] 2014 36 Geographic

data views
on commo
farms, load
forecasting
detection,
series com
power potential and space availability, or either equipped with
small combined heat and power systems.

Nowadays energy consumption has a very significant role in
inputs cost of manufacturing companies. Furthermore power outa-
ges can cause substantial economical losses in some manufacturing
processes. As a consequence, innovative energy supply and backup
architectures and systems are being developed together with this cost
rising for industrial companies. Following this line of research,
recent approaches to MG planning for industrial facilities have been
published in technical literature. Pipattanasompor et al. analyze [85]
the optimal DGmix at various facility outage costs with and without
an emission restriction. They also discuss the impact of varying the
grid reliability and the capital costs of DG units on the decision to
invest in backup power. Leif et al. [86] propose a technique for sizing
and scheduling electricity supply at industrial sites with combined
heat and power and wind generation. An industrial size MG is
scheduled [87] and evaluated regarding different performance
indicators such as technical, economic and environmental. The
techno-economic potential for a predominantly renewable
electricity-based MG serving an industrial-sized drink water plant
in the Netherlands is studied [88] by Soshinskaya et al.

EMSs are ready to gather and manage data, not only from the
manufacturing process, but also from power supply equipment:
power generation machines (from conventional to renewable
power sources), distribution substations, power transformers and
grids and smart meters (that control and monitor power con-
sumption at the point of delivery). An example of EMS based on
microgrid architecture is presented in [89]. Furthermore, an inte-
grated analysis of stored data from different units of the manu-
facturing process can reveal several opportunities to exploit at
different layers in order to improve the global efficiency (such as
energy generation, energy distribution, energy consumption,
production planning, resources planning and environmental
impact planning). As a consequence, production and energy supply
could be planned in an aggregated way towards achieving higher
sustainability and energy efficiency goals for a manufacturing com-
pany. This could be considered a suitable framework for industrial
MG planning, modifying other traditional approaches [90]. A
scheme of this innovative approach is presented in Fig. 2.
4. KDD-based approaches to industrial MG planning problems

MGs could definitely be considered a modern, small-scale ver-
sion of centralized electricity systems. A MG is defined by CERTS as
clusters of generators, including heat recovery, storage, and loads,
which are operated as single controllable entities. P. Lilienthal high-
lights [91] different criteria for MG classification such as: types of
applications to power systems (as described in each paper)

(Forecasting), system description (Modeling)

sesment, economic feasibility, fault detection, load profiling, power system con-
mic load dispatch, data debbuging, network-expansion planning, fault detection,
ation, load forecasting
sponse (DM-based), strategic bidding in electricity market (ML-based)
visualization of frequency, 3D visualization of power system data, geographic

, visualization of power system contingencies, power system visualization based
n information model, data-driven visualization, cable layout design for wind
pocket identification, probabilistic evaluation of total transfer capability, load
, event detection, data debugging and bad data detection, non technical loss
secure economic dispatch, accuracy versus interpretability trade-off, locating
pensators
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energy generation, voltage level of distribution system, peak load,
generation capacity, energy production, number of customers
served, other grids interconnection, load management and meter-
ing. Regardless of their classification, the operation of a MG is clo-
sely tied to energy economics. This includes both the financials of
interacting with the main grid and the cost of self-generation [92]
and transmission. Moreover, MGs can operate in islanded mode and
sustain the power supply in the event of a grid outage. Benefits from
MGs should not only be economical. MGs can also be viewed as a
means of creating zero net-energy communities and meeting other
environmental goals established by states or regulatory agencies. The
establishment of a MG can make possible to achieve specific goals
such as carbon emission reduction, diversification of energy sources,
increase of reliability and cost reduction.

MG planning problems, as the energy community systems it is,
must be approached from a cost minimization point of view [93].
But in a real microgrid, other goals should be considered, such as
total environmental impact, power quality and reliability [94].
Regarding technical literature, some common problems could be
defined for a MG planning process, even though each process has its
own constraints and specific goals [90]. There can be considered five
main stages such as power generation and storage technology selec-
tion, sizing, siting, scheduling and pricing . Among these planning
problems, an additional critical stage can be also considered in order
to test the final design of both architecture and control strategies for
a microgrid. This additional stage is called sensitivity analysis and
consists on determining how different values of an independent
variable will impact a particular dependent variable, under a given
set of assumptions. It is addressed towards predicting the outcome
of a decision, if a situation turns out to be different compared to the
key prediction [95]. The application of this analysis usually results
on more robust planning results.

But MG planning does not finish with de definition of an optimal
scheduling for the equipment. A MG, as the power systems it is, must
be supervised and able to respond quickly and coherently to unex-
pected operational conditions. The control and supervision layer is
implemented in a management system called EMS, such as it is for
manufacturing processes. In fact, this system is the main source of
synergies between manufacturing processes and MGs. But an EMS
for a MG also incorporates a plan against unexpected events, which
can be defined as contingency planning. KDD techniques are able to
make a significant contribution to supervision and contingency
planning for power systems. Some references of KDD-based techni-
ques to power systems have been introduced in Table 2.
Table 2

Category Objective

State stimation Dynamic security assessment
Data debugging
Condition assessment
Non technical losses detection
Sensitivities of some indices at a target locatio

Supervision and forecasting Predicting-aided state estimation including ba

Disturbance classification
Power quality assessment

On-line prediction of power system transient
Fault detection and classification Fault detection

Protection scheme configuration Protection scheme configuration
A growing number of new advances are progressively devel-
oping the conventional electrical energy supply, and among them,
the application of KDD techniques is expected to make life easier
to power companies but also to consumers. But up to now, these
advances have generated a great deal of enthusiasm, as well as a
considerable amount of confusion [75]. Grid intelligence for MG
relies on data infrastructure, data management and data analytics
layers. Since most manufacturing processes have already imple-
mented data infrastructure and data management layers, only data
analytics layer is left towards developing smart industrial micro-
grids. The quick expansion of manufacturing management systems
such as MESs, EMSs and ERPs allows the increase of available
historical data about manufacturing processes (such as energy
consumption, environmental impact, production planning, quality
keeping, risk prevention, resources planning, financial planning,
etc.). In this context KDD techniques are ready not only to analyze,
but also to capitalize these data [33]. Hence, analytics can combine
data management with the knowledge of energy efficiency and pro-
duction process experts to uncover hidden saving potential, thereby
contributing effectively in making better business decisions.
Indeed, the full potential of energy saving for a manufacturing
process can only be defined through a holistic and integrated
analysis of the complete value chain of the plant. Thus, MGs can
solve the problem on energy alternative and compatible use,
integrating system data to optimize operation and management.

Following this approach, a MG can be considered as a suitable
energy supply system for a manufacturing process. The core of this
system would be, without any doubt, the EMS. It is expected to
manage the systems, gathering and analyzing information about
how systems work in a day-by-day (even hour-by hour) basis. In
fact, the use of KDD-based techniques on industrial MG planning
involves a different approach to the manufacturing process plan-
ning, on the basis that a large amount of raw data about it is
available. These data will be used to develop aggregated models
for the industrial process, which can be addressed to effective
decision-making. As a result, it can be asserted that KDD techniques
are ready to help energy planners to define economically feasible MG
architectures for industrial processes.

Among future capacities for these industrial MGs will be,
without any doubt, the identification of optimal energy efficiency
and sustainability scenarios for every state of the manufacturing
process. In addition, EMS should help energy planners to identify
the most efficient working parameters for the manufacturing
process, even suggest them different strategies to exploit different
Method Paper

Decision tree [116,125]
Clustering [128]
Correlation analysis [127]
Classification [137]

n to prescribed credible events Patterns classification [131,132]
d data Clustering [117]

[118]
Correlation analysis [118]
Pattern recognition [122]
Clustering [129,130]

[130]
Classification [130]

stability Decision tree [133]
Pattern learning [119,134]
Correlation analysis [120]
Decision tree [123,136]
Classification [124]
Decision tree [121,128,135]
Rough set theory [121,126]
Classification [134]
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energy efficiency improvement opportunities, which could also be
developed under supervision, supported by ML techniques.

Innovative energy efficiency and sustainability approaches to
industrial microgrid planning allowed by the application of KDD
techniques, are described below. In fact, techniques described
below could be applied by a single planning engineer, but the real
challenge is developing software applications and EMSs able to
develop these approaches under DM and ML techniques (Fig. 3).

4.1. Sizing approaches

Typical goals of the sizing stage in a MG planning process are
cost efficiency (low investment and operational costs), energy
efficiency (low power losses and high renewable power sources
penetration) and high reliability. Energy planners have usually
sized a microgrid considering peak and base demand of the whole
process, and oversizing power capacities in order to achieve
reliability goals. Traditionally, the point of departure of a microgrid
planning process has been the demand curve (on an hourly or
quarter-hourly basis). A typical demand curves for a manufactur-
ing process is shown in Fig. 4. Some characteristic points can be
identified in them, such as peak demand, base demand. A power
capacity histogram (as the one showed in Fig. 5) is also a valuable
source of information to consider towards defining most common
power capacity levels of a system. In addition, demand oscillations
can be related with specific events in the manufacturing process,
but the identification of these relationships could not be a simple
task depending on the process and the way it is operated. KDD
techniques are can nowadays address these and other potential
tasks described below:
Fig. 3. A KDD-based approach to mic
� New bottom-up approach to sizing: the existence of field data
allows energy planners to adopt more complex strategies.
Different models can be generated and validated using raw
data, not only for the whole manufacturing process but also for
different sub-processes or ancillary services. These models can
be applied in order to define the optimal architecture and size
for the MG. The analysis of raw data [83] makes it possible to
define different power demand intervals and levels regarding
different power capacity usage scenarios for manufacturing
equipment. Once every power capacity level is characterized
for every manufacturing unit and ancillary service, optimal
technologies, sizes and power regulation capacities for genera-
tion equipment can be accurately defined.

� Capacity charge saving opportunities: an optimally sized MG
can considerably minimize capacity charges from utilities. In
order to achieve these savings, an optimal mix of power tech-
nologies and power capacities must be defined for MG. These
power capacity reduction savings are based again into power
consumption data analysis (from the manufacturing process),
but also into additional information from electrical company
such as capacity costs, peak and off peak periods schedule, or
even additional signals based on-demand side management or
demand response strategies. A detailed cost-benefit analysis on
power capacity should be done in order to achieve a long-term
economic viability for a grid-connected MG.

� Energy storage capacity definition: some MG aspects such as
quality keeping and renewable energy resources penetration are
highly depend on energy storage capacity and scheduling. Real
field data can help in the task of developing accurate models for
the MG in order to optimize the technology selection, size (and
rogrid planning process scheme.
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Fig. 4. Demand curve for a continuous manufacturing process.
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allocation) of storage devices according to economic and envir-
onmental constraints. In fact, the economic viability of applica-
tions based on renewable power sources strongly depends on the
required quantity and capacity of associated energy storage
devices, due to their high initial and replacement costs.

� Other advanced modeling capabilities: the availability of raw data
about a real process is a clear advantage in order to design, even
to redesign an industrial power supply system. For example, an
empirical analysis using real energy use data for smart grid
planning, customer education and demand response strategies
design is presented in [96]. In [97] the trade-off between the
accuracy and the transparency of data mining-based models in
the context of catastrophe predictors for power grid response-
based remedial action schemes are studied. Regarding manufac-
turing processes, not every process keep design conditions along
its entire lifecycle. Manufacturing facilities are usually modified
in order to process new materials of even to manufacture new
products. Hence, EMSs at industrial MGs should at least be able to
identify optimal opportunities for power systems redesign,
towards continue fulfilling the same (or even new) objectives
about renewable power sources penetration, energy consump-
tion, net-metering capacities and combined heat and power
integration. Depending on the type of manufacturing process
and its constraints, some demand side management and demand
response strategies could be successfully applied.

4.2. Siting approaches

As it has been cited in the previous section, power quality and
reliability are the main goals of siting problems in MG planning.
The previous existence of electricity consumption and quality data
about the manufacturing process is a clear advantage. Power
quality problems will be, for sure, well defined since they cannot
be only modeled, but also these models can be validated using real
field data. In other words, the capacity and allocation require-
ments both for storage and power generation systems can be
defined using optimization techniques on previously developed
models.

Moreover, siting is also a critical problem in MG expansion.
Considering a multi-plant supply or a competitive power market
environment, consumption data that includes spatial and tem-
poral characteristics is quite useful for power networks develop-
ment and marketing strategies planning. The proposed spatial
modeling approach is an exploratory data analysis, trying to dis-
cover useful patterns in spatial data that are not obvious to the
data user and are useful in the spatial load forecast. For example, a
modified form of the mountain method is adopted for cluster
estimation [98]. In addition, other approaches to siting problems
are solved using KDD techniques. Locational Marginal Pricing
(LMP) is a mechanism for using market-based prices for managing
transmission congestion. LMP resulting from bidding competition
represents electrical and economical values at nodes or in areas
that may provide economical indicator signals to the market
agents. In [99] a data mining-based methodology that helps
characterizing zonal prices in real power transmission networks is
proposed. A two-step and k-means clustering algorithms are used
in order to extract knowledge to support the investment and
network-expansion planning.



Fig. 5. Frequency histograms of a welding area in a heat exchanger manufacturing process.
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4.3. Scheduling approaches

Perhaps the most powerful source of cost and environmental
emissions savings, regarding MG planning and following a KDD
approach, is resources scheduling. Real data from a manufacturing
process is the basis of a robust manufacturing process model
development. Once this model is developed, forecasting cap-
abilities have proven to be very useful for scheduling tasks and
savings achievement. Simulation and sensitive analysis could be
used in order to find optimal work conditions both for power
supply and manufacturing equipment. As it has been cited in the
previous sections, the future of systems such as ERPs and EMSs is
in integration and analytics. A combined analysis tool both for
energy supply and manufacturing processes will allow the com-
pany to identify new performance improvement scenarios. Some
of these future capacities for EMSs are:

� On-line monitoring and scheduling is also a desirable capability to
integrate in these systems. Total time required to manufacture an
item includes some specific intervals such as order preparation
time, queue time, setup time, run time, move time, inspection
time, and put-away time. Some of these times can be considered
stand-by times from energy consumption point of view. Some
stand-by periods could be considered wasted energy and should
be avoided or minimized, if possible. Hence, start and stops for
manufacturing and power equipment must be scheduled, turn off
and turn on protocols must be followed and monitored. An
example of unsupervised stops is shown in Fig. 6. It can be
highlighted that usually power capacity during stand-by periods
is never the same or even similar. In this line, a novel approach to
the identification of the devices present in an electrical installation
based on the measurement of current at the incoming supply
point is presented in [100]. This new approach performs a black-
box analysis to determine what devices are possibly present, just
by taking measurements from the electrical wiring that leads to
the black-box. Several neural network-based models were devel-
oped and tested for signature identification (pattern recognition)
of electrical devices based on the current harmonics, even under
noisy conditions. Once main consumptions are identified, power
supply requirements can be modeled together with production
process requirements. So, the whole system could be scheduled
and results forecasted. For example, a real-time energy manage-
ment problem is faced up in [101] and [102]. A research platform
driven by an existing campus MG for developing (DM-based)
predictive analytics for real-time energy management is presented
in [102]. Meanwhile Wang et al. present in [101] an online
algorithm for optimal real-time energy distribution. Four data
mining approaches for wind turbine power curve monitoring are
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Fig. 6. Power capacity/energy consumption during stop and stand-by states in a manufacturing process.
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compared in [103]. An optimal voltage control is proposed in for a
MG [104] using data mining techniques: regression rules to
estimate the optimum reactive power of the wind farms and
classification trees to estimate the optimum transformer taps.

� Optimal supervision and control parameters: perhaps the most
valuable knowledge that can be extracted from process data is
partial and full load ratios regarding energy consumption. These
real ratios can be calculated from raw data, but in some occa-
sions some experiments must be forced in order to complete
the scope of every sub-process. In a manufacturing process it is
critical important to know performance ratios at the most
common load percentages for every sub-process and ancillary
service, including power generation equipment. Further rela-
tionship with other variables such as quality parameters should
be studied in order to reject working parameters that do not
fulfill process constraints. This data would allow energy plan-
ners to develop more effective scheduling. High percentages of
energy savings could be reached, especially in oversized man-
ufacturing and power equipment if additional quality and
production constraints are fulfilled in time. Also equipment
must allow load regulation. Following these guidelines, a super-
vision system could be designed in order to verify that some
critical variables and index remains in a range of efficiency
values and different constraints are fulfilled. If the system is
working under inefficient scenarios, automatic (M2M) or semi-
automatic (H2M) control strategies are suitable to be developed
[105]. In [106] a formulation for energy management of a
microgrid is proposed using ML techniques jointly with linear-
programming-based multi-objective optimization, aiming to
minimize the operation cost and the environmental impact of
a microgrid. An artificial neural network ensemble is developed
with demand and generation forecasting purposes, based on
short term load forecasting and using a self-supervised adaptive
neural network [107]. In [108] four time series models for
different prediction horizons for a wind farm are built by data
mining algorithms.
Among all the articles reviewed in order to write this paper,
only Overturf et al. [109] combine DER (energy supply) an man-
ufacturing process (production) planning for industrial companies.
They develop a continuous improvement approach (which they
call Sufficiency Kaizen) and conclude that taking control over the
allocation and production of energy, corporations can obviate
energy cost impact and risk, with relief immediate, and absolute
impact over time.

4.4. Pricing approaches

Forecasting not only power generation, but also electricity
prices plays a significant role in making optimal scheduling deci-
sions in competitive electricity markets. Predominantly, price
forecasting looks for the exact values of future prices. However, in
some applications, such as demand-side management, operation
decisions are based on certain price thresholds. Thus, it can be
focused as an electricity price classification problem [110]. Energy
price spike forecasting is studied in [111]. Support vector machine
and probability classifier algorithms are chosen to be the spike
occurrence predictors and realistic market data are used to test the
proposed model. In [112] the application of classical techniques
towards forecasting energy prices in combination with data
mining neural networks yields a more accurate and realistic per-
formance than conventional forecasting techniques.

Instead of reacting to changing market conditions system
managers can adopt a fix price or a time of use tariff. But also they
can be proactive in their approach to energy efficiency and man-
agement adopting demand side management and demand
response strategies [113,114]. Advanced energy efficiency strate-
gies such as net-metering could also be studied in order to gen-
erate profits for the company. As it has been mentioned in the
previous section, some of these opportunities can derive on
automatic or semi-automatic control strategies in order to reduce
energy costs. But a manufacturing company must verify carefully
the application of pricing strategies. Production planners look for a
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stable environment for their process, and that is the reason why
dynamic pricing and demand response strategies are not usually
attractive for them, unless cost savings are high. Additionally some
energy efficiency scenarios can cause other cost rising, e.g. work at
night will increase salaries in spite of decreasing energy costs.

4.5. Contingency planning and security assessment

KDD techniques can help not only to detect contingence
situations but also to manage a system in an unexpected envir-
onment. ML techniques applied to power systems security
assessment are described in [115]. Indeed security assessment is a
very important task in MGs, and there exist several KDD-based
applications in this field, summarized and referenced in Table 2.
5. Conclusions and future trends

Although manufacturing processes are among the most mon-
itored and supervised, IoT development is pushing this tendency
nowadays. Data gathered by manufacturing companies is strongly
increasing, but, on the other side, software management tools are
not usually able to make a deep analysis of this data. In other
words, KDD techniques are not widely extended, and companies
are not exploiting the full potential from their gathered data yet,
especially regarding knowledge acquisition. As it has been
addressed by Cios and Kurgan [25], the future of KDD techniques is
in achieving overall integration into other popular industrial stan-
dards. Another very important issue is to provide interoperability
and compatibility between different software systems and platforms,
which also concerns KDD-based applications. Such systems would
serve end-users in automating, or more realistically semi-automating,
work with the development of innovative DM and ML-based appli-
cations [105]. Recent advances in innovative architectures and
techniques, such as IoT and DM, make it possible for manu-
facturing management systems to evolve quickly towards fore-
casting, modeling and optimizing capabilities. These capabilities
are expected to take part of manufacturing management systems
software, such as MES, EMS and ERPs, soon.

From an energy efficiency point of view, it could be asserted
that the full potential of energy saving for a manufacturing process
can only be defined through a holistic and integrated analysis of
the complete value chain of the plant: not only from a generation
and distribution point of view, but also from consumption and
manufacturing process requirements. Following this approach,
KDD techniques and specially DM techniques can exploit data
gathered by MES, EMS and ERPs. The discovered information can be
combined with the knowledge of industrial experts to uncover hidden
saving potential, thereby contributing effectively in making better
business decisions.

At the same time, MGs are proving to be reliable and sustainable
alternatives to traditional power systems. They are also called to be
the evolution of the present power systems due to their scalability
and their potential for smart capabilities integration. In this con-
text, MG architectures must be considered in order to provide
more reliable and cleaner energy to manufacturing processes,
including the most energy-intensive ones. Manufacturing pro-
cesses and microgrid systems share a common layer, the EMS.
EMSs are expected to be under a strong development in future
years due to the integration with KDD and artificial intelligence
techniques and technologies.

Actually, manufacturing processes and MGs have many goals in
common such as quality keeping, environmental impact mini-
mization, cost minimization and energy efficiency. Under these
circumstances, the integration of MG architectures with manu-
facturing processes under a KDD approach has not been deeply
analyzed. Many synergies are present, especially regarding the
integration of both EMSs based on IoT and KDD techniques. This
innovative approach is expected, at least, to reveal innovative cost-
saving and environmental impact minimization opportunities for
the whole system. At the same time, traditional planning process
for an industrial microgrid could be modified regarding innovative
KDD-based techniques, as it is proposed in Fig. 3.

Industrial processes have been selected for this approach due to
they are among the most data-intensive and energy-intensive
applications, and they are usually controlled by a single entity
(usually a company). This same approach could be applied to other
MG potential applications less intensive in data gathering or energy
consumption, such as military and university campus, airports and
hospitals. The results of viability studies will be conditioned by
social, environmental and legal factors but specially by those
regarding initial investment on data gathering, energy costs and
energy consumption (such as type of facility, size, working hours in
a year and location). The search of suitable, sustainable and profitable
scenarios for this integration, and specially the development of
advanced EMSs (friendly and integrated software tools with smart
capabilities) are some of the following stages for this line of research.
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