

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 1

- Public -

Project Acronym: VICINITY

Project Full Title: Open virtual neighbourhood network to connect intelligent
buildings and smart objects

Grant Agreement: 688467

Project Duration: 48 months (01/01/2016 - 31/12/2019)

Deliverable D6.2

Report on VICINITY test-bed deployment, including Validation,

Parameterization and Testing

Work Package: WP6 – VICINITY Framework Integration & Lab Testing

Task(s): T6.2 – Lab setup, Testing & Validation

Lead Beneficiary: AAU

Due Date: 31st December 2018 (M36)

Submission Date: 18th December 2018 (M36)

Deliverable Status: Final

Deliverable Type: DEM

Dissemination Level: PU

File Name: VICINITY_Report on VICINITY test-bed deployment, including Validation,
Parameterization and Testing_v1.0.pdf

This project has received funding from the European Union’s Horizon 2020

Research and innovation programme under Grant Agreement n°688467

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 2

- Public -

VICINITY Consortium

No Beneficiary Country

1. TU Kaiserslautern (Coordinator) UNIKL Germany

2. ATOS SPAIN SA ATOS Spain

3. Centre for Research and Technology Hellas CERTH Greece

4. Aalborg University AAU Denmark

5. GORENJE GOSPODINJSKI APARATI D.D. GRN Slovenia

6. Hellenic Telecommunications Organization S.A. OTE Greece

7. bAvenir s.r.o. BVR Slovakia

8. Climate Associates Ltd CAL United Kingdom

9. InterSoft A.S. IS Slovakia

10. Universidad Politécnica de Madrid UPM Spain

11. Gnomon Informatics S.A. GNOMON Greece

12. Tiny Mesh AS TINYM Norway

13. HAFENSTROM AS HITS Norway

14. Enercoutim – Associação Empresarial de Energia Solar de
Alcoutim

ENERC Portugal

15. Municipality of Pylaia-Hortiatis MPH Greece

1 Deliverable Type:
R: Document, report (excluding the periodic and final reports)
DEM: Demonstrator, pilot, prototype, plan designs
DEC: Websites, patents filing, press & media actions, videos, etc.
OTHER: Software, technical diagram, etc.

2 Dissemination level:
PU: Public, fully open, e.g. web
CO: Confidential, restricted under conditions set out in Model Grant Agreement
CI: Classified, information as referred to in Commission Decision 2001/844/EC.

Disclaimer
This document reflects only the author's views and the European Union is not liable for any use that may be made of the information
contained therein.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 3

- Public -

Authors List

Leading Author (Editor)

Surname First Name Beneficiary Contact email

Guan Yajuan AAU ygu@et.aau.dk

Co-authors (in alphabetic order)

No Surname First Name Beneficiary Contact email

1. Čolić Nikolaj GRN Nikolaj.Colic@gorenje.com

2. Feng Wei AAU wfe@et.aau.dk

3. Fernandez David ATOS david.gomez@atos.net

4. Flsveen Flemming HITS flsveen@online.no

5. Filosofov Dmitry TINYM dmitry@tiny-mesh.com

6. Guerrero Josep AAU joz@et.aau.dk

7. Heinz Christopher UNIKL heinz@cs.uni-kl.de

8. Horniak Martin BVR martin.horniak@bavenir.eu

9. Hovstø Asbjørn HITS hovsto@online.no

10. Koutli Mary CERTH mkoutli@iti.gr

11. Koelsch Johannes UNIKL koelsch@cs.uni-kl.de

12. Oravec Viktor BVR viktor.oravec@bavenir.eu

13. Palacios-Garcia Emilio AAU epg@et.aau.dk

14. Poljakov German TINYM german@tiny-mesh.com

15. Tryferidis Thanasis CERTH thanasic@iti.gr

16. Theologou Natalia CERTH nataliath@iti.gr

17. Vásquez Juan AAU juq@et.aau.dk

18. Vanya Stefan BVR stefan.vanya@bavenir.eu

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 4

- Public -

Reviewers List

List of Reviewers (in alphabetic order)

No Surname First Name Beneficiary Contact email

1. Almela Miralles Jorge BVR jorge.almela@bavenir.eu

2. Paralič Marek IS marek.paralic@intersoft.sk

3. Sundvor Mariann TINYM (Chair) mariann@tiny-mesh.com

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 5

- Public -

Revision Control

Version Date Status Modifications made by

0.1 10 May 2018 Initial draft Guan (AAU), Guerrero (AAU), Vásquez (AAU)

0.2 20 May 2018 Updated draft Guan (AAU), Guerrero (AAU), Vásquez (AAU)

0.3 20 May 2018 First Draft formatted
includes feedbacks from WP
6 contributors

Guan (AAU), Koutli (CERTH)

0.4 3 July 2018 Second Draft formatted
includes feedbacks from WP
6 contributors

Guan (AAU), Koutli (CERTH), Fernandez (ATOS)

0.5 20 July 2018 Third Draft formatted
includes feedbacks from WP
6 contributors

Guan (AAU), Koutli (CERTH), Fernandez (ATOS)

0.6 25 Oct 2018 Fourth Draft formatted
includes feedbacks from WP
6 contributors

Guan (AAU), Koutli (CERTH), Fernandez (ATOS)

0.7 18 Nov 2018 Fifth Draft formatted
includes feedbacks from WP
6 contributors

Guan (AAU), Koutli (CERTH), Fernandez (ATOS),
Heinz (UNIKL), Koelsch (UNIKL), Feng (UNIKL),
Emilio (AAU)

0.8 26 Nov 2018 Seventh Draft formatted
includes feedbacks from WP
6 contributors

Guan (AAU), Koutli (CERTH), Fernandez (ATOS),
Heinz (UNIKL), Koelsch (UNIKL), Feng (UNIKL),
Emilio (AAU)

0.9 27 Nov 2018 Seventh Draft formatted
includes feedbacks from WP
6 contributors

Guan (AAU), Koutli (CERTH), Fernandez (ATOS),
Heinz (UNIKL), Koelsch (UNIKL), Feng (UNIKL),
Emilio (AAU), Guerrero (AAU), Vásquez (AAU)

0.9.1 28 Nov 2018 First Final Draft to be sent for
reviewing

Guan (AAU), Koutli (CERTH), Fernandez (ATOS),
Heinz (UNIKL), Koelsch (UNIKL), Feng (UNIKL),
Emilio (AAU), Guerrero (AAU), Vásquez (AAU),
Oravec (BVR), Horniak (BVR), Vanya (BVR)

0.9.2 17 Dec 2018 Final Draft reviewed Guan (AAU), Koutli (CERTH), Fernandez (ATOS),
Heinz (UNIKL), Koelsch (UNIKL), Feng (UNIKL)

1.0 18 Dec 2018 Submission to the EC Zivkovic (UNIKL)

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 6

- Public -

Executive Summary

This deliverable and demonstrator (Annex) present the Lab testing and validation for each of the
components, such as Adapters, Agent, Gateway API, that constitute the VICINITY [1] framework, and for
the user-cases defined in D5.2. It is an important part to reach Milestone 7 in the conduction of Lab testing
and validation within Task T.6.2.

After the fundamental integration tests in D6.1, testing plans of D6.2 are developed in terms of Edge Case
Testing Methodology which includes both edge case testing and internal point testing. Two important
results have been achieved from the lab-testing:

A. VICINITY prototype performance when closing to the edges/limits has been tested and restricted
by means of Edge Case Testing. Therefore, specify a stable operation zone for VICINITY platform.

B. The internal point testing scenarios are mostly designed to be consistent with use-cases defined in
WP5. They mainly focus on prototype functionality and performance, including cross-domain
testing cases, in order to validate and improve VICINITY prototype functionality.

This deliverable and demonstrator cover all individual modules that have been developed in WP3 -
“VICINITY Server Implementation”, WP4 - “VICINITY Client Infrastructures Implementation”, and keep in
line with WP5 – “Value-Added Services Implementation”. Core components functions, integration
performance, features are tested and validated. Problems identified are timely reported and solved. The
Lab testing results are forwarded to WP8 – “Pilot demonstration and Overall evaluation”.

In addition, this deliverable addresses some of the feedback comments given by our reviewers: VICINITY
and especially the academic partners should research the use of new technologies and their application
and value for VICINITY. The Lab Testing of partner UNIKL will hence also go beyond what was written in the
Description of Work and will evaluate Network Simulators for virtual Prototyping of VICINITY use cases and
also homomorphic encryption to further enhance Privacy of the project’s solution.

The related Adapters and VASs are publicly available in VICINITY H2020 GitHub with configuration and
installation documentation including source code [2].

In conclusion, the deliverable and demonstrator focus on iterative Lab testing and validation from VICINITY
node to node communication to the real-time experimental platform and complex cross-domain testing
scenarios.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 7

- Public -

Table of Contents

Executive Summary ... 6

1. Introduction .. 13

1.1. Context within VICINITY ... 13
1.2. Objectives in Work Package 6 and Task 6.2 ... 14
1.3. Structure of the Deliverable ... 14

2. Test Methodology and Test Scope .. 15

2.1. Test Methodology .. 15
2.2. Tested VICINITY Platform configuration and coverage .. 15

3. Edge Case Testing (AAU - DK) .. 16

3.1. Testing objective and the Role of the Vicinity Prototype... 16
3.2. Edge Case Testing 1 - Stress registration properties .. 16
3.2.1. Testing case design ... 16
3.2.2. Testing Platform ... 17
3.2.3. Testing results .. 17
3.3. Edge Case Testing 2 - Limit of parallel registrations .. 18
3.3.1. Testing case design ... 18
3.3.2. Testing Platform ... 19
3.3.3. Testing results .. 19
3.4. Edge Case Testing 3 - Large size of payload for GET request ... 20
3.4.1. Testing case design ... 20
3.4.2. Testing Platform ... 21
3.4.3. Testing results .. 21

4. Internal point testing – Smart Parking & Residential Microgrid (AAU - DK) 22

4.1. Testing objective, Testing Environment and the Role of the Vicinity Prototype 22
4.2. Internal point testing 1 - Optimal usage of parking slots by considering energy costs 22
4.2.1. Testing case design ... 22
4.2.2. Testing Platform ... 24
4.2.3. Testing Results .. 24
4.3. Internal point testing 2 - Abnormal situation identification for elderly residents 25
4.3.1. Testing case design ... 25
4.3.2. Testing Platform ... 27
4.3.3. Testing Results .. 27

5. Internal point testing – Smart Building & Residential Microgrid (AAU - DK) 29

5.1. Testing objective, Testing Environment and the Role of the Vicinity Prototype 29
5.2. Internal point testing 3 - Predictive operations_Cleaning and Waste Removal Notification 29
5.2.1. Testing case design ... 29

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 8

- Public -

5.2.2. Testing Platform ... 30
5.2.3. Testing Results .. 31
5.3. Internal point testing 4 - Energy consumption optimization and abnormal alarm 32
5.3.1. Testing case design ... 32
5.3.2. Testing Platform ... 33
5.3.3. Testing results .. 33

6. Internal point testing – Smart Residential Microgrid Energy Management (AAU - DK)
 35

6.1. Testing objective, Testing Environment and the Role of the Vicinity Prototype 35
6.2. Internal point testing 5 - Optimal Load Scheduling and Microgrid Operation 35
6.2.1. Testing case design ... 35
6.2.2. Testing Platform ... 37
6.2.3. Testing results .. 37
6.3. Internal point testing 6 – Solar irradiance forecast.. 38
6.3.1. Testing case design ... 38
6.3.2. Testing Platform ... 39
6.3.3. Testing Results .. 39

7. Internal point testing – CERTH/ITI Smart House (smart living and eHealth at Home)
(CERTH, GNOMON - GR) .. 41

7.1. Testing objective, Testing Environment and the Role of the Vicinity Prototype 41
7.2. Internal point testing 7 - Privacy testing using a Smart Home scenario 41
7.2.1. Testing case design ... 41
7.2.2. Testing Platform ... 43
7.2.3. Testing results .. 43
7.3. Internal point testing 8 – Large scale integration of eHealth infrastructures 44
7.3.1. Testing case design ... 44
7.3.2. Testing Platform ... 45
7.3.3. Testing Results .. 46

8. Internal point testing – Integration of Internet of Everything Lab (ATOS - ESP) 47

8.1. Testing objective, Testing Environment and the Role of the Vicinity Prototype 47
8.2. Internal point testing 9 - Integration of LoRa devices .. 47
8.2.1. Testing case design ... 47
8.2.2. Testing Platform ... 49
8.2.3. Testing results .. 49
8.3. Internal point testing 10 – Generic integration of FIWARE-compliant devices 50
8.3.1. Testing case design ... 50
8.3.2. Testing Platform ... 51
8.3.3. Testing Results .. 51

9. Internal point testing – Scalability and Privacy Evaluations of VICINITY Architecture
(UNIKL - GER) ... 53

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 9

- Public -

9.1. Testing objective, Testing Environment and the Role of the Vicinity Prototype 53
9.2. Internal point testing 11 - Integration of Omnet++ Network Simulator into VICINITY 53
9.2.1. Testing case design ... 53
9.2.2. Testing Platform ... 55
9.2.3. Testing Results .. 55
9.3. Internal point testing 12 – Evaluation and Research on Homomorphic Encryption to be used for
data aggregation for VAS ... 57
9.3.1. Testing case design ... 57
9.3.2. Testing Platform ... 59
9.3.3. Testing results .. 59

10. Conclusions ... 60

11. References .. 61

Annex I – Edge Case Testing 1 - Stress registration properties (AAU-DK) 62

Annex II – Edge Case Testing 2 - Limit of parallel registrations (AAU-DK) 64

Annex III – Edge Case Testing 3 - Large size of payload for GET request (AAU-DK) 69

Annex IV – Internal point testing 1 - Optimal usage of parking slots by considering energy
costs (AAU - DK) ... 71

Annex V – Internal point testing 2 - Abnormal situation identification for elderly residents
(AAU - DK) .. 74

Annex VI – Internal point testing 3 - Cleaning and Waste Removal Notification (AAU - DK)
 ... 77

Annex VII – Internal point testing 4 - Energy consumption optimization and abnormal alarm
(AAU - DK) .. 78

Annex VIII – Internal point testing 5 - Optimal Scheduling and Microgrid Operation (AAU -
DK) ... 81

Annex IX – Internal point testing 6 – Solar irradiance forecast (AAU - DK) 83

Annex X – Internal point testing 7 - Privacy testing using a Smart Home scenario (CERTH/ITI
- GR) ... 85

Annex XI – Internal point testing 8 – Large scale integration of eHealth infrastructures
(CERTH, GNOMON - GR) .. 92

Annex XII – Internal point testing 9 - Integration of LoRa devices (ATOS - ESP) 94

Annex XIII – Internal point testing 10 – Generic integration of FIWARE-compliant devices
(ATOS - ESP) ... 97

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 10

- Public -

Annex XIV – Internal point testing 11 - Integration of Omnet++ Network Simulator into
VICINITY (UNIKL - GER) .. 100

Annex XV – Internal point testing 12 – Evaluation and Research on Homomorphic Encryption
to be used for data aggregation for VAS (UNIKL - GER) ... 101

Applications in VICINITY pilots and intended prove-of-concept ... 101
Integration into VICINITY components .. 102

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 11

- Public -

List of Tables

Table 1 Wall clock time with different levels activated and dynamically relying on the information provided
by L0 .. 57

Table 2 Wall clock time with all levels activated .. 57

List of Figures

Figure 1 Work Package Architecture .. 13
Figure 2 Testing platform and involved components for edge case testing 1 .. 17
Figure 3 Testing platform and involved components for edge case testing 2 .. 19
Figure 4 Testing platform and involved components for edge case testing 3 .. 21
Figure 5 Testing platform and involved components for internal point testing 1 .. 24
Figure 6 Testing platform and involved components for internal point testing 2 .. 27
Figure 7 Testing platform and involved components for internal point testing 3 .. 30
Figure 8 Testing platform and involved components for internal point testing 4 .. 33
Figure 9 Testing platform and involved components for internal point testing 5 .. 37
Figure 10 Testing platform and involved components for internal point testing 6 39
Figure 11 Testing platform and involved components for internal point testing 7 43
Figure 12 Testing platform and involved components for internal point testing 8 45
Figure 13 Testing platform and involved components for internal point testing 9 49
Figure 14 Testing platform and involved components for internal point testing 10 51
Figure 15 High-level model of Smart Parking Use Case .. 54
Figure 16 Testing Framework Architecture- internal point testing 11 ... 55
Figure 17 The model tree and organisation of hierarchical levels .. 57
Figure 18 Testing platform and involved components for internal point testing 12 59

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 12

- Public -

List of Definitions & Abbreviations

Abbreviation Definition

AC Alternating Current

API Application Program Interface

DC Direct Current

EC European Commission

EMS Energy Management System

EU European Union

EV Electric Vehicle

GUI Graphical User Interface

HIL Hardware in the Loop

MG Microgrid

NM Neighbourhood Manager

PV Photovoltaic

RMEMS Residential microgrid energy management system

SoC State of Charge

TD Thing description

UI User Interface

VAS Value-Added Services

WP Work Package

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 13

- Public -

1. Introduction

The deliverable and demonstrator describe the Lab testing process and results for the core components
that constitute the VICINITY prototype and the pilot user cases to validate their performance and
functionality under both edge cases and internal point cases.

Focus of this deliverable and demonstrator is providing a detailed handbook of the conducted Lab tests to
describe the testing steps, actual testing results and solved technical issues.

The tested components cover all individual modules that have been developed in WP3 - “VICINITY Server
Implementation”, WP4 - “VICINITY Client Infrastructures Implementation”. The testing scenarios are
designed by considering both unusual circumstances and normal operation points. The formal restrictions
of the discovery process with unusual circumstances are defined and validated in D6.3. The normal
operation points are designed consisting of the user cases defined in D5.2.

1.1. Context within VICINITY

Fehler! Verweisquelle konnte nicht gefunden werden. gives an overview of the context of D6.2 within
VICINITY. As already mentioned, D6.2 is an important step to reach Milestone 7 (MS7) which marks the
conduction of intensive integrated Lab testing for VICINITY prototype, with the use of the VICINITY server
components/services, client infrastructures and value-added services that were made available by the
previous milestones.

Figure 1 Work Package Architecture

Regarding the relation to other WPs, the current document and demonstrator builds on the results of
previous WPs, specifically:

• WP1 – VICINITY Concept Requirements, Barriers, Specification, and Architecture

• WP3 – VICINITY Server Implementation

• WP4 – VICINITY Client Infrastructures Implementation

• WP5 – Value-Added Services implementation

Requirements
Specification

WP1:

Platforms
Standards

WP2:

Client/Server
Implementation

WP3, 4:

Value-added
services

WP5:

WP2 - Tracking requirements, monitoring & contributing to standardization
WP 9, 10: Dissemination, Exploitation, Management, Open Calls

…

D1.X

Semantic model

MS1 MS2 MS3

(time)

D2.2

Integration and testingWP6:

Deployment and pilotsWP7:

Demonstration and evaluationWP8:

MS4

(updates)

(updates)

today
MS7

M36

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 14

- Public -

The outcome of this deliverable and demonstrator will form the basis of work for the following WPs and
Tasks:

• WP7 – On-site Deployment and Pilot Installations

• WP8 – Pilot Demonstration and Overall Evaluation

1.2. Objectives in Work Package 6 and Task 6.2

The purpose of WP6 “VICINITY Framework Integration and Lab Testing” is to ensure that the VICINITY
platform operates correctly from a technical perspective prior to deployment at the pilot sites in WP7.

T6.1 “Integration of VICINITY Components”, focusses on integrating the components that form server and
client infrastructures, along with the related value-added services to form the first version of the VICINITY
prototype. The layout and scope of the tests in T6.1 were decided, based on: pilot site definitions, functional
requirements, operational requirements and the VICINITY architecture as defined by WP1 “Requirements
Specification” and the value-added services as defined by WP5 “Value-Added Services Implementation”.
The issues that were uncovered during the process are documented in the VICINITY Issues Log which is
available for all partners of the project, with the status and context of individual issues. Evidence of the
progress in solving these issues with cross-pilot cooperation can also be found on the internal project
website. Resolved issues resulted in new versions of the software components, which were deployed
following regression testing.

T6.2 “Lab setup, Testing & Validation” deals with two kinds of lab-testing. The first is Edge case testing to
validate the expected prototype performance when close to the edges/limits according to the requirements
detailed in WP1. The second kind of lab testing focuses on functionality and performance, including cross-
domain testing scenarios, in line with value-added services defined in WP5. The diagnosed problems during
the lab-testing process are discussed and resolved by collaboration among partners to improve and enrich
VICINITY prototype functionality.

T6.3 “Auto-discovery space deployment and validation”, establishes the quality and performance of the
auto-discovery platform which identifies IoT device types and enables interoperability at the semantic level.
Any limitations of the discovery process are identified and resolved as reported in D6.3.

1.3. Structure of the Deliverable

Chapter 1: Introduction to the deliverable, and the context of the Tasks in Vicinity. This section outlines
the role this document plays in the development process.

Chapter 2: Test Methodology and Test Scope.

Chapter 3: Edge Case Testing.

Chapter 4-9: Internal point testing.

Annex I-XV: Demonstrators.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 15

- Public -

2. Test Methodology and Test Scope

2.1. Test Methodology

After the fundamental integration tests in D6.1, the testing methodology employed in this deliverable is
Edge Case Testing Methodology which can be defined as strategies and testing types used to certify that
the Application Under Test meets client expectations. The testing plans are designed for examining both
edge cases and internal point cases, therefore ensuring that the testing cases have good coverage over the
range of values.

The edge testing cases consist of stress registration properties, limit of parallel registrations, and large size
of the payload for GET request. They are designed to restrict some features of Gateway API by considering
the requirements and installation specifications envisioned in WP1 in order to define a stability and proper
operating range for VICINITY platform.

The internal testing points keep in line with the user-cases defined in WP5 to verify the adapter/VAS
functional performance and ensure the expected operation. They cover mobility, building, energy, and
eHealth domains and refer to privacy, GDPR VAS, LoRa, and FIWARE-compliant device, Omnet++ network
simulator and homomorphic encryption.

If the testing results or the design behave unexpectedly, a bug and a trace that lead to it are reported
through Open Project, emails, Skype and Slack. Iterative tests have been conducted to verify the solutions
and evenly to solve the bugs.

The general structure for each testing case mainly includes test scenario and goal, VICINITY
components/functions involved, equipment and testing environments, expected results, test procedure,
testing platforms, real results, user interfaces, deviations encountered from expected result and solutions,
and an annex for the demonstrator.

2.2. Tested VICINITY Platform configuration and coverage

The tested VICINITY Platform configuration and interfaces are referred to Sections 2.2 and 2.3 of D6.1.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 16

- Public -

3. Edge Case Testing (AAU - DK)

3.1. Testing objective and the Role of the Vicinity Prototype

The objective of the edge case testing is trying to push some features of Gateway API to its limits, in order
to get knowledge of the behaviour of a VICINITY prototype under unusual circumstances. For instance, with
heavy load.

Three different edge case tests have been carried out, which have directly interacted with Neighbourhood
Manager, Gateway API (v0.6.3), Agent (v0.6.3) and a testing virtual device node.

The formal restrictions of the discovery process with unusual circumstances are defined and validated in
D6.3.

3.2. Edge Case Testing 1 - Stress registration properties

3.2.1. Testing case design

Edge case testing 1 Stress registration properties

Test scenario and goal The current testing case aims to test whether the VICINITY prototype can
deal with a registration with heavy payload.

Iterations The test was conducted 3 times for the Agent 0.6.3.

VICINITY
components/functions
involved

• Adapter of a virtue testing device v0.0.1
• Agent v0.6.3
• Gateway API v0.6.3
• VICINITY Neighbourhood manager v0.6.3

Equipment and testing
environments

• None.

Deployment • The adapter for the virtue testing device is established based on
Python 3. It can be run on any PC by executing the .py file.

Expected results • Response should contain the information of “Discovery for adapter
successfully done”. The status code of the response should be 200.
The registered device should be found in the Neighbourhood
manager.

Test procedure The test procedure consists of the following steps:
1. Create an access point in Neighbourhood manager,

o Choose VICINITY agent
o Give it a name and set a password

2. Use password and AID received after completing step 1 to setup
/agent/gateway combo.

3. Start gateway
4. Start agent
5. Create a device thing description with 10000 properties through

python3.6
6. Send HTTP request to agent to register thing through python3.6,

o Request: POST
http://<agent_URL>:<agent_port>/agent/objects

o Required payload is generated testing thing description

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 17

- Public -

3.2.2. Testing Platform

Figure 2 Testing platform and involved components for edge case testing 1.

3.2.3. Testing results

VICINITY Cloud

Testing Device

VICINITY
Gateway API

VICINITY
Communication

Node

VICINITY Agent

VICINITY Adapter

Virtual testing device

7. End of test.

Edge case testing 1 Stress registration properties

Real results and
constraints identified

1. After sending the POST request, a response containing the
information of successful registration is received, and the status code
of the response is 200. The device with 10000 properties can be found
in the Neighbourhood Manager. The VICINITY prototype can deal
with a registration with at least 10000 properties.

Developed

User Interfaces

None.

Functionalities:

Real results (demo) Related snapshots of data flows are included in Annex I.

Deviations None.

Other technical issues None.

Status Passed.

Notes None.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 18

- Public -

3.3. Edge Case Testing 2 - Limit of parallel registrations

3.3.1. Testing case design

Edge case testing 2 Limit of parallel registrations

Test scenario and goal The current testing case aims to identify how many parallel registrations
can be handled by VICINITY prototype.

Iterations The test was conducted 5 times for the Agent 0.6.3.

VICINITY
components/functions
involved

• Adapter of a virtue testing device v0.0.1
• Agent v0.6.3
• Gateway API v0.6.3
• VICINITY neighborhood manager v0.6.3

Equipment and testing
environments

• None.

Deployment • The adapter for the virtue testing device is established based on
Python 3. It can be run on any PC by executing the .py file.

Expected results • A response containing the information of “Discovery for adapter
successfully done!” should be received after step 6 and step 13
respectively. The status code of the response should be 200. The
registered devices should be found in the Neighbourhood manager.

Test procedure The test procedure consists of the following steps:
1. Create an access point in Neighbourhood manager,

o Choose VICINITY agent
o Give it a name and set a password.

2. Use password and AID received after completing step 1 to setup
/agent/gateway combo.

3. Start gateway
4. Start agent
5. Create 64 thing descriptions through python 3.6
6. Send HTTP request to agent to register thing through python 3.6,

o Request: POST
http://<agent_URL>:<agent_port>/agent/objects

o Required payload is generated testing thing description

7. Stop agent
8. Stop gateway
9. Delete agent/config/db folder in agent to delete 64 things in

Neighbourhood manager.
10. Start gateway
11. Start agent
12. Create 65 thing descriptions through python3.6
13. Send HTTP request to agent to register thing through python3.6,

o Request: POST
http://<agent_URL>:<agent_port>/agent/objects

o Required payload is generated testing thing description

14. End of test.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 19

- Public -

3.3.2. Testing Platform

Figure 3 Testing platform and involved components for edge case testing 2.

3.3.3. Testing results

VICINITY Cloud

Testing Device

VICINITY
Gateway API

VICINITY
Communication

Node

VICINITY Agent

VICINITY Adapter

Virtual testing device

Edge case testing 2 Limit of parallel registrations

Real results and
constraints identified

• After step 6, a response containing the information of successful
registration is received, and the status code of the response is 200.
The 64 devices can be found in the Neighbourhood manager.

• After step 13, a response containing the information of “Discovery
for adapter failed” is received, and the status code of the response is
400. However, 65 devices can still be found in the Neighbourhood
manager. The limitation of simultaneous registrations is found which
is equal to 64 with light payload.

Developed

User Interfaces

None.

Functionalities:

Real results (demo) Related snapshots of data flows are included in Annex II.

Deviations • Although a response of “Discovery for adapter failed” is received and
the status code of the response is 400, the 65 devices can still be
found in Neighbourhood manager.

Other technical issues None.

Status Passed.

Notes None.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 20

- Public -

3.4. Edge Case Testing 3 - Large size of payload for GET request

3.4.1. Testing case design

Edge case testing 3 Large size of payload for GET request

Test scenario and goal The current testing case aims to identify whether the VICINITY prototype
can successfully respond to a GET request for heavy payload.

Iterations The test was conducted 3 times for the Agent 0.6.3.

VICINITY
components/functions
involved

• Adapter of two virtue testing device v0.0.1
• Agent v0.6.3
• Gateway API v0.6.3
• VICINITY Neighbourhood manager v0.6.3

Equipment and testing
environments

• None.

Deployment • The adapter for the virtue testing device is established based on
Python 3. It can be run on any PC by executing the .py file.

Expected results • Response to the request should be received. Postman should receive
the response containing 200,000 data and 200 status code.

Test procedure The test procedure consists of the following steps:
1. Create an access point in Neighbourhood manager

o Choose VICINITY agent
o Give it a name and set a password

2. Use password and AID received after completing step 1 to setup
/agent/gateway combo.

3. Start gateway
4. Start agent
5. Create thing description for two devices through python 3.6, in

which one device with a property emulates sender, the other
device emulates receiver to read sender property.

6. Send HTTP request to agent to register two testing things
through python 3.6,

o Request: POST
http://<agent_URL>:<agent_port>/agent/objects

o Required payload is generated testing thing description

7. Run python 3.6 based adapter for the sender, it will send 200,000
string values as data.

8. Run Postman to emulate adapter for receiver and send HTTP
request to agent to read sender’s property.

o Request: GET http://<agent_URL>:

<agent_port>/agent/objects/<oid>/properties/maxpayloadtest

o Required header is adapter ID and infrastructure ID of
receiver.

9. End of test.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 21

- Public -

3.4.2. Testing Platform

Figure 4 Testing platform and involved components for edge case testing 3.

3.4.3. Testing results

VICINITY Cloud

Testing Device

VICINITY
Gateway API

VICINITY
Communication

Node

VICINITY Agent

VICINITY Adapter

Virtual testing device_ Sender

Testing Device

VICINITY
Gateway API

VICINITY
Communication

Node

VICINITY Agent

VICINITY Adapter

Virtual testing device_Receiver

. Large size of payload for GET request

Real results and
constraints identified

• After sending GET request by Postman, a response is received with
200,000 data and 200 status code.

Developed

User Interfaces

None.

Functionalities:

Real results (demo) Related snapshots of data flows are included in Annex III.

Deviations None.

Other technical issues None.

Status Passed.

Notes None.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 22

- Public -

4. Internal point testing – Smart Parking & Residential Microgrid
(AAU - DK)

4.1. Testing objective, Testing Environment and the Role of the Vicinity Prototype

In the development of traffic management systems, intelligent parking systems get a lot of attention in
terms of sharing private and public parking space, reducing the cost of hiring people and for optimal use of
resources for car-park owners. In line with Pilot Use Case 1b.1: Shared parking/priority parking defined in
WP5, the Internal point testing 1 deals with providing users with data about the number of free parking
slots and the real-time charging price for EVs. In line with Pilot Use Case 1b.2: eHealth Emergency parking
listed in WP5, the Internal point testing 2 copes with providing a panic button function for the end-user by
collecting the smart appliance properties.

Parking slot usage data is collected through VICINITY by using three parking sensors to achieve monitoring
function. A residential microgrid, which consists of PV, a wind turbine and batteries, is emulated based on
a real-time dSPACE experimental platform in AAU IoT-microgrid Lab. The residential microgrid is assumed
to supply power to EV chargers in the three parking slots. GORENJE smart refrigerator is included in the
residential microgrid. The real-time charging price is calculated by considering the simulated real-time
utility electricity price, state-of-charge of batteries, and forecasts of the PV and wind turbine power
generation. The parking slot usage and the real-time charging price will be sent automatically to users after
subscribing Optimal Usage of Parking Slots by Considering Energy Costs VAS. The abnormal situation will be
reported, and a parking slot will be reserved by Abnormal Situation Identification for Elderly Residents VAS.
LabVIEW-based user interfaces are developed for monitoring and notification.

The VAS adapters, PlacePod parking sensor adapter, GORENJE appliance, Agent, Gateway API and all
interaction patterns in VICINITY are tested during the VAS implementation process. Active and Passive
Discovery of the Agent is used for the parking sensor adapter and the VAS respectively. The VAS can GET
the properties of the parking sensor through VICINITY. The VASs subscribe the event published by the
parking sensors and publish events to an end-user thus testing the publish/subscribe performance of
VICINITY.

4.2. Internal point testing 1 - Optimal usage of parking slots by considering energy costs

4.2.1. Testing case design

Internal point testing 1 Optimal usage of parking slots by considering energy costs

Test scenario and goal The current testing case deals with providing users with data about the
number of free parking slots and the real-time charging price for EVs in
order to optimize energy and parking slot usages and to reduce end-
users’ bills.

Iterations The test was conducted 6 times for the Agent 0.6.2 and Agent 0.6.3 and
consists of continuously running the residential microgrid for a period of
5 to 10 minutes.

VICINITY
components/functions
involved

• Adapter of PlacePod parking sensors v0.0.1
• Adapter of VAS - “Vacant parking slot and charging price notifications

service” v1.0.0
• Agent v0.6.3

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 23

- Public -

• Gateway API v0.6.3
• VICINITY Neighbourhood manager v0.6.3

Equipment and testing
environments

• Three PlacePod parking sensors for Tromsø (NO) pilot site
• Multitech LoRaWAN gateway for Tromsø (NO) pilot site
• Microgrid emulation workstations in AAU lab
• Chroma Grid Simulator
• Local resistive loads
• LabVIEW-based residential microgrid energy management system

(RMEMS)
Deployment • The VAS is established based on Python 3, which is connected to

LabVIEW-based Energy Management System through TCP/IP
(http://localhost:10005). It can be run on any PC by executing the .py
file.

Expected results • A Residential microgrid setup that involves renewable energy
resources (PV panels and a wind turbine), DC/AC power converters,
energy storage systems, and three PlacePod parking sensors are
properly running.

• Parking sensors, a testing device, and VAS registered can be viewed
in the Neighbourhood Manager under “Devices” and “Services” menu
items separately.

• VAS (service) node can make a request to its agent for data from the
parking sensor (device) node.

• VAS node can subscribe to the event of the parking sensor node.
• The VAS monitors the parking slot usage and calculates the real-time

charging price.
• Parking slots usage and the residential microgrid operation status are

shown on a LabVIEW-based graphical user interface (GUI) 1 (as shown
in Section 4.2.3).

• VAS publishes an event with parking slot usage and real-time charging
price.

• The testing device node can subscribe to the event published by the
VAS.

• Parking slots usage and the real-time charging price are shown on a
simplified GUI 2 (as shown in Section 4.2.3).

Test procedure The test procedure consists of the following steps:
• The tester first needs to build a residential microgrid with renewable

energy resources, microgrid emulation setups, grid simulator, dSPACE
real-time simulation platform, and PlacePod parking sensors.

• Register parking sensors, the Optimal Usage of Parking Slots by
Considering Energy Costs VAS, and a testing device node in VICINITY
Neighbourhood Manager with the same Organisation.

• The VAS node subscribes to the event of the parking sensor node.
• The VAS publishes an event with parking slot usage and real-time

charging price.
• The testing device node becomes friends with the VAS.
• The testing device node subscribes to the event of the VAS.
• The tester monitors the operation status of the residential microgrid,

the parking slot usage, and real-time charging price from GUIs 1 and
2.

• The tester occupies one parking sensor and turns on one load to
emulate the EV charging process. The rest two parking slots are free.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 24

- Public -

4.2.2. Testing Platform

Figure 5 Testing platform and involved components for internal point testing 1.

4.2.3. Testing Results

VICINITY
P2P

network

Residential
microgrid

380V AC Bus

VICINITY
P2P

network

VICINITY Cloud

VICINITY
Gateway API

VICINITY
Communication Node

VICINITY Agent

VICINITY Adapter

AAU VAS Node

RMEMS (Labview-based)

PlacePodVICINITY Nodes

VICINITY
Gateway API

VICINITY
Communication Node

VICINITY Agent

VICINITY Adapter

Parking
Sensor 1

Parking
Sensor 2

Parking
Sensor 3

Testing Node

VICINITY
Gateway API

VICINITY
Communication Node

VICINITY Agent

VICINITY Adapter

PV system WT system

Residential loads

ESS

AC
DC

AC
DC

AC
DC

• The tester verifies that the energy balance calculation is conducted
by considering the energy generation forecast and energy
consumption for one occupied parking slot. Based on the calculation
results, a parking and charging rate is announced for the rest two free
parking slots.

• End of test.

Internal point testing 1 Optimal usage of parking slots by considering energy costs

Real results • A Residential microgrid setup that involves renewable energy
resources (PV panels and a wind turbine), DC/AC power converters,
local loads, and three PlacePod parking sensors are properly running.

• Agent starts up without failing and successfully registers devices from
configuration file with TDs in the VICINITY. Parking sensors, a testing
device, and VAS registered can be viewed in the Neighbourhood
Manager under “Devices” and “Services” menu items separately.

• Once the event is sent to subscribers of the VAS/testing device node,
the publisher (parking sensor node/VAS) of the event gets a response
with the success message and information about the event was sent
to how many subscribers.

• The VAS node is able to receive the parking sensor node events, the
data of the event contains the number of free parking slot and time-
stamp.

• The testing device node is able to receive the VAS events, the data of
the event contains the number of free parking slots, EV charging
price, and time-stamp.

• Parking slot usage, EV charging price, and the residential microgrid
operation status such as the power generation and state-of-charge
of batteries are shown on GUI 1.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 25

- Public -

4.3. Internal point testing 2 - Abnormal situation identification for elderly residents

4.3.1. Testing case design

• Parking slots usage and real-time EV charging price are shown on GUI
2.

Developed

User Interfaces

 GUI 1 GUI 2

Functionalities:

The residential microgrid manager can monitor the operation
performance of devices, energy resources, and the usage status of the
parking lot.

The user can choose the preferred parking time based on the vacant
parking slot number and real-time charging price.

Real results (demo) Related snapshots of the GUIs, waveforms, control boards, setups, data
flows are included in Annex IV.

Deviations 21.09.2018

Bug #46: Change of status trigger exception.

Every time a change of status in a parking sensor occurs, the field
ParkingSensor[”sentralTime”] is out of range triggering an exception.

23.09.2018

Changed the type from Integer to Long and the issue has been solved.

Other technical issues None.

Status Passed after corrections.

Notes None.

Internal point testing 2 Abnormal situation identification for elderly residents

Test scenario and goal Identify abnormal situations, for instance, a refrigerator’ door has been
left open more than normal time and trigger notifications to a care
provider (a testing node) and reserve a free parking slot for an
ambulance.

Iterations The test was conducted 5 times for the Agent 0.6.3.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 26

- Public -

VICINITY
components/functions
involved

• Adapter of PlacePod parking sensors v0.0.1
• Adapter of VAS - “Abnormal situation identification for elderly

residents” v1.0.0
• Cloud-based Adapter of GORENJE smart refrigerator #7 v1.0.0
• Agent v0.6.3
• Gateway API v0.6.3
• VICINITY Neighbourhood manager v0.6.3

Equipment and testing
environments

• Three PlacePod parking sensors for Tromsø (NO) pilot site
• Multitech LoRaWAN gateway for Tromsø (NO) pilot site
• GORENJE smart refrigerator #7
• LabVIEW-based RMEMS

Deployment • The VAS is established based on Python 3, which is connected to
LabVIEW-based GUI through TCP/IP (http://localhost:10005). It can
be run on any PC by executing the .py file.

Expected results • Parking sensors, GORENJE smart refrigerator #7, a testing device and
the VAS registered can be viewed in the Neighbourhood Manager
under “Devices” and “Services” menu items separately.

• VAS node can subscribe to the events of the parking sensor node and
GORENJE refrigerator #7.

• The VAS monitors the refrigerator door status and the parking lot
usage.

• Refrigerator door status and parking lot usage are shown on a
LabVIEW-based GUI.

• Once the refrigerator door has been left open than 15 minutes, an
alarm light turns red in the GUI and the VAS publishes an event with
abnormal situation notification.

• The testing device node can subscribe to the event published by the
VAS.

Test procedure The test procedure consists of the following steps:
• Register parking sensors, GORENJE smart refrigerator #7, the

Abnormal situation identification for elderly residents VAS, and a
testing device node in VICINITY Neighbourhood Manager with
different Organisations.

• GORENJE smart refrigerator #7 establish the friendship with
Abnormal situation identification for elderly residents VAS.

• The VAS node subscribes to the event of the parking sensor node and
GORENJE smart refrigerator #7.

• The VAS publishes an event with parking slot usage and abnormal
situation alarm.

• The testing device node becomes friends with the VAS.
• The testing device node subscribes to the event of the VAS.
• The tester monitors the parking slot usage and refrigerator status

from a GUI.
• The tester leaves the refrigerator up door open for 15 minutes.
• End of test.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 27

- Public -

4.3.2. Testing Platform

Figure 6 Testing platform and involved components for internal point testing 2.

4.3.3. Testing Results

380V AC Bus

VICINITY
P2P

network

VICINITY Cloud

GUI

PlacePodParking Node

Parking
Sensor 1

Parking
Sensor 2

Parking
Sensor 3

AC
DC

AC
DC

AC
DC

VICINITY
Gateway API

VICINITY
Communication

Node

VICINITY Agent

VICINITY Adapter

VICINITY
P2P

network

AAU VAS Node

VICINITY
Gateway API

VICINITY
Communication

Node

VICINITY Agent

VICINITY Adapter

Testing Device

VICINITY
Gateway API

VICINITY
Communication

Node

VICINITY Agent

VICINITY Adapter

Gorenje Organization

VICINITY
Gateway API

VICINITY
Communication

Node

VICINITY Agent

VICINITY Adapter

VICINITY
P2P

network

Internal point testing 2 Abnormal situation identification for elderly residents

Real results • Agent starts up without failing and successfully registers devices from
configuration file with TDs in the VICINITY. Parking sensors, GORENJE
smart refrigerator #7, a testing device, and the VAS registered can be
viewed in the Neighbourhood Manager under “Devices” and
“Services” menu items separately.

• The VAS node is able to receive the event of GORENJE refrigerator #7
which contains the door status.

• The VAS node is able to publish an event to the testing device for an
abnormal situation.

• Parking slots usage and refrigerator status such as the refrigerator’
door open/close status are shown on the GUI.

• Once the refrigerator’ door is opened more than 15 minutes, a red
alarm light (Panic button) is turned on in the GUI and the VAS triggers
an event to the testing node. Meanwhile, a free parking slot is
reserved for the potential ambulance.

Developed

User Interfaces

Functionalities:

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 28

- Public -

The Care Center can monitor the refrigerator door status, panic button,
and the usage of the parking lot.

Real results (demo) Related snapshots of the GUIs, waveforms, control boards, setups, data
flows are included in Annex V.

Deviations None.

Other technical issues None.

Status Passed.

Notes None.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 29

- Public -

5. Internal point testing – Smart Building & Residential Microgrid
(AAU - DK)

5.1. Testing objective, Testing Environment and the Role of the Vicinity Prototype

By means of smart sensors and devices, activities can be automatically detected and identified. By
comparing these sensing data with the recorded behaviour patterns, many services and controls can be
achieved, such as energy cost notification and accident detection. In line with Pilot Use Case 1a.1 –
Predictive operations defined in WP5, the Internal point testing 3 deals with providing users with data about
the room usage and cleaning notification. In line with Pilot Use Case 1a.2 – Resource management, the
Internal point testing 4 copes with energy consumption abnormal alarm for the end-user in a residential
microgrid.

Room usage data is collected through VICINITY by using one Tinymesh door sensor. If the room usage data
is over a pre-set threshold, a cleaning notification will be triggered by the VAS. The energy consumption
data is collected through an emulated residential microgrid which includes PV, a wind turbine, batteries, a
GORENJE smart oven, and a GORENJE refrigerator. An energy cost alarm will be triggered by Energy
consumption abnormal VAS if the energy consumption reaches the nominal level. LabVIEW-based GUIs are
used for monitoring and notification.

The VAS adapters, Tinymesh door sensor adapter, GORENJE appliances, Agent, Gateway API and all
interaction patterns in VICINITY are tested during the VAS implementation process. The VAS can GET the
properties of the door sensor through VICINITY. The VAS subscribes to the events published by the door
sensors and GORENJE appliances. The VAS also publishes events to an end-user thus testing the
publish/subscribe performance of VICINITY.

5.2. Internal point testing 3 - Predictive operations_Cleaning and Waste Removal
Notification

5.2.1. Testing case design

Internal point testing 3 Predictive operations_Cleaning and Waste Removal Notification

Test scenario and goal The door sensor registers if a person passes the door (in an anonymized
way) and can thus keep tracking of the approximate number of room
been visited. When the number reaches the threshold, a cleaning
notification will be reported.

Iterations The test was conducted 2 times for the Agent 0.6.3.

VICINITY
components/functions
involved

• Adapter of Tinymesh door sensor v0.0.1
• Adapter of VAS - “Cleaning Notification” v1.0.0
• Agent v0.6.3
• Gateway API v0.6.3
• VICINITY Neighbourhood manager v0.6.3

Equipment and testing
environments

• One Tinymesh door sensor for Oslo (NO) pilot site
• Raspberry Pi-based Tinymesh gateway for Oslo (NO) pilot site
• LabVIEW-based GUI

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 30

- Public -

5.2.2. Testing Platform

Figure 7 Testing platform and involved components for internal point testing 3.

VICINITY Cloud

GUI

VICINITY
P2P

network

AAU VAS Node

VICINITY
Gateway API

VICINITY
Communication

Node

VICINITY Agent

VICINITY Adapter

Testing Device

VICINITY
Gateway API

VICINITY
Communication

Node

VICINITY Agent

VICINITY Adapter

Tinymeshdoorsensor

VICINITY
Gateway API

VICINITY
Communication

Node

VICINITY Agent

VICINITY Adapter

VICINITY
P2P

network

Deployment The VAS is established based on Python 3, which is connected to
LabVIEW-based GUI through TCP/IP (http://localhost:10005). It can
be run on any PC by executing the .py file.

Expected results • The Tinymesh door sensor, a testing device, and the Cleaning
Notification VAS registered in the Neighbourhood Manager.

• VAS node can subscribe to the event of door sensor node.
• The VAS monitors the door sensor on/off count.
• Room usage is shown on the GUI.
• If the room usage data collected from the door sensor is over 10

times, the VAS publishes an event with the room usage count and a
cleaning notification.

• The testing device node can subscribe to the event published by the
VAS.

Test procedure The test procedure consists of the following steps:
• Register the door sensor, Cleaning Notification VAS, and a testing

device node in the VICINITY Neighbourhood Manager.
• The VAS node subscribes to the event of the door sensor.
• The VAS publishes an event with room usage count and a cleaning

notification.
• The testing device node becomes friends with the VAS and subscribes

to the event of the VAS.
• The tester monitors the room usage from the GUI.
• End of test.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 31

- Public -

5.2.3. Testing Results

Internal point testing 3 Predictive operations_Cleaning and Waste Removal Notification

Real results • Agent starts up without failing and successfully registers a Tinymesh
door sensor, a testing device, and the VAS from configuration file
with TDs in the VICINITY.

• The VAS node is able to receive an event of Tinymesh door sensor
which contains the door status.

• The VAS node is able to publish an event to the testing device for
cleaning notification and room usage count.

• Room usage is shown on the GUI.
• Once the room usage count is over 10 times, a red cleaning

notification light is turned on in the GUI and the VAS publishes an
event to the testing node.

Developed

User Interfaces

Functionalities:

The user can monitor room usage status and view a notification when the
room usage amount reaches the pre-set threshold.

Real results (demo) Related snapshots of the GUIs, waveforms, control boards, setups, data
flows are included in Annex VI.

Deviations The door sensor has some latency for the status changes.

Other technical issues The quality of the door sensor needs to be improved for the accuracy of
the measurements.

Status Passed.

Notes Change event subscribe manner from dynamic to static.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 32

- Public -

5.3. Internal point testing 4 - Energy consumption optimization and abnormal alarm

5.3.1. Testing case design

Internal point testing 4 Energy consumption optimization and abnormal alarm

Test scenario and goal The energy management system of a residential microgrid optimizes
microgrid operation to reduce energy cost. In case that the energy
consumption exceeds desired thresholds, for instance, continuously
baking, an energy consumption abnormal alarm will be triggered.

Iterations The test was conducted 3 times for the Agent 0.6.3.

VICINITY
components/functions
involved

• Adapter of GORENJE smart oven #7 v1.0.0
• Adapter of VAS - “Energy consumption abnormal” v1.0.0
• Agent v0.6.3
• Gateway API v0.6.3
• VICINITY Neighbourhood manager v0.6.3

Equipment and testing
environments

• GORENJE smart oven #7
• Microgrid emulation workstations in AAU lab
• Chroma Grid Simulator
• Local resistive loads
• Energy management system

Deployment • The VAS is established based on Python 3, which is connected to
LabVIEW-based Energy Management System through TCP/IP
(http://localhost:10005). It can be run on any PC by executing the .py
file.

Expected results • A Residential microgrid setup that involves renewable energy
resources (PV panels and a wind turbine), DC/AC power converters,
and a GORENJE smart oven is properly running.

• GORENJE smart oven #7, a testing device and VAS registered can be
viewed in the Neighbourhood Manager.

• VAS node can make an action request to its agent to start oven baking
function.

• VAS node can subscribe to the event of oven device status.
• The VAS monitors the microgrid operation and oven status and shows

the data on a GUI.
• VAS publishes an event with energy consumption abnormal

notification.
• The testing device node can subscribe to the event published by the

VAS.
Test procedure The test procedure consists of the following steps:

• The tester first needs to build a residential microgrid.
• Register GORENJE oven #7, Energy Consumption Notification VAS, and

a testing device node in VICINITY Neighbourhood Manager with
different organisations.

• The GORENJE organisation establishes the friendship with Energy
Consumption Notification VAS.

• The VAS node subscribes to the event of oven #7 device status.
• The VAS publishes an event with energy consumption abnormal

notification.
• The testing device node subscribes to the event of the VAS.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 33

- Public -

5.3.2. Testing Platform

Figure 8 Testing platform and involved components for internal point testing 4.

5.3.3. Testing results

Residential microgrid

380V AC Bus

VICINITY Cloud

RMEMS GUI

PV system WT systemESS

Testing Device

VICINITY
Gateway API

VICINITY
Communication

Node

VICINITY Agent

VICINITY Adapter

AAU VAS Node

VICINITY
Gateway API

VICINITY
Communication

Node

VICINITY Agent

VICINITY Adapter

Gorenje Organization

VICINITY
Gateway API

VICINITY
Communication

Node

VICINITY Agent

VICINITY Adapter

• The tester monitors the operation of the residential microgrid and the
oven status from the GUI.

• The tester let the oven baking for 10 minutes.
• End of test.

Internal point testing
4

Energy consumption optimization and abnormal alarm

Real results • A Residential microgrid setup is properly running.
• GORENJE oven #7 is registered in the Neighbourhood Manager under

“Devices” menu item with GORENJE organisation.
• Agent starts up without failing and successfully registers the testing

device and Energy Consumption Notification VAS from configuration file
with TDs in the VICINITY Neighbourhood Manager with AAU
organisation.

• The contract is established between the two organisations.
• The VAS node is able to receive the oven status event with the data of

name, status string (Running, Idle, and Pause) and time-stamp.
• The testing device node is able to receive the VAS events, the data of the

event contains the energy consumption abnormal notification and time-
stamp.

• Microgrid operation and oven status are shown on the GUI.
• If the oven is continuously baking over 10 minutes, the total energy

consumption will exceed the pre-set threshold, therefore trigger the
event.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 34

- Public -

Developed

User Interfaces

Tu

Functionalities:

The user can monitor the power generation, energy consumption, and oven
status.

Real results (demo) Related snapshots of the GUIs, waveforms, control boards, setups, data flows
are included in Annex VII.

Deviations e None.

Other technical issues Remote baking only works when the VAS agent just started. It is fixed by
GORENJE by setting the previous task status to finished/cancelled.

Status Passed after corrections.

Notes None.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 35

- Public -

6. Internal point testing – Smart Residential Microgrid Energy
Management (AAU - DK)

6.1. Testing objective, Testing Environment and the Role of the Vicinity Prototype

Microgrids are energy systems that aggregate distributed energy resources, loads, and power electronics
devices in a stable, optimal and balanced way. Energy management is central to the concept of a microgrid
in order to achieve substation monitoring, improve energy efficiency and demand profile, reduce utility and
economic cost, and optimize coordinative operation. In line with Pilot User Case 2.1-2.5, 2.10, 2.11, and
1a.2, Internal point testing 5 - Optimal Scheduling and Operation Energy Management is conducted to
validate a peak demand shifting and scheduling, thereby maintaining the reliable power supply and
reducing the resident’s bills. In line with Pilot User Case 2.9 – UV (Ultraviolet radiation) info services for
Citizens and Tourists – Local to Local Services, Internal point testing 6 is designed for providing solar
irradiance forecast.

The energy consumption data is collected through an emulated residential microgrid which includes PV, a
wind turbine, batteries, a GORENJE smart oven, and a refrigerator. A LabVIEW-based energy management
system is developed to achieve optimized control for energy resources and local loads and to perform a
scheduling function. The Optimal Scheduling and Operation Energy Management VAS subscribes to the
event published by GORENJE appliances and send actions (baking and delay) to the appliances. The Solar
Irradiance Forecast VAS provides a short-term prediction of solar irradiance for subscribers.

The VAS adapters, GORENJE appliances, Agent, Gateway API and all interaction patterns in VICINITY are
tested during the VAS implementation process. The VASs subscribe to the event published by GORENJE
appliances and remotely control them. The VASs can post commands to the appliances, therefore testing
the action performance. The VAS also publishes events to an end-user thus testing the publish/subscribe
performance of VICINITY.

6.2. Internal point testing 5 - Optimal Load Scheduling and Microgrid Operation

6.2.1. Testing case design

Internal point testing 5 Optimal Load Scheduling and Microgrid Operation

Test scenario and goal Maintain power balance and reduce electricity cost by encouraging
residential customers to shift loads according to the renewable energy
generation.

Iterations The test will be conducted 3 times.

VICINITY
components/functions
involved

• Adapter of GORENJE smart oven #7 v1.0.0
• Adapter of GORENJE smart refrigerator #7 v1.0.0
• Adapter of VAS - “Optimal Load Scheduling and Microgrid Operation”

v1.0.0
• Agent v0.6.3
• Gateway API v0.6.3
• VICINITY Neighbourhood Manager v0.6.3

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 36

- Public -

Equipment and testing
environments

• GORENJE smart oven #7
• GORENJE smart refrigerator #7
• Microgrid emulation workstations in AAU lab
• Chroma Grid Simulator
• Local resistive loads
• Energy management system

Deployment • The VAS is established based on Python 3, which is connected to
LabVIEW-based Energy Management System through TCP/IP
(http://localhost:10005). It can be run on any PC by executing the .py
file.

Expected results • A Residential microgrid setup that involves renewable energy
resources (PV panels and a wind turbine), DC/AC power converters,
energy storage systems, a GORENJE smart oven, and a GORENJE
smart refrigerator is properly running.

• GORENJE oven #7, GORENJE refrigerator #7, and VAS registered can
be viewed in the Neighbourhood Manager.

• VAS node can make action requests to its agent to start oven baking
function and start refrigerator Fastfreeze function.

• VAS node can subscribe to the event of oven device status and get
the properties of the refrigerator.

• The VAS monitors the microgrid operation and oven/refrigerator
status and shows the data on a GUI.

Test procedure The test procedure consists of the following steps:
• The tester first needs to build a residential microgrid.
• Register GORENJE oven #7, refrigerator #7, and Optimal Scheduling

and Operation Energy Management VAS in VICINITY Neighbourhood
Manager with different organisations.

• The GORENJE organisation establishes the friendship with the VAS.
• The VAS node sends POST commands to the oven for starting baking.
• The VAS node turns on the Fastfreeze function of the refrigerator.
• The tester monitors the operation status of the residential microgrid,

oven and refrigerator from the GUI.
• End of test.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 37

- Public -

6.2.2. Testing Platform

Figure 9 Testing platform and involved components for internal point testing 5.

6.2.3. Testing results

Residential microgrid

380V AC Bus

VICINITY Cloud

RMEMS GUI

PV system WT systemESS

AAU VAS Node

VICINITY
Gateway API

VICINITY
Communication

Node

VICINITY Agent

VICINITY Adapter

Gorenje Organization

VICINITY
Gateway API

VICINITY
Communication

Node

VICINITY Agent

VICINITY Adapter

Internal point testing 5 Optimal Load Scheduling and Microgrid Operation

Real results • A Residential microgrid setup is properly running.
• Agent starts up without failing and successfully registers the GORENJE

oven #7, refrigerator #7, and the VAS in the Neighbourhood Manager
with GORENJE and AAU organisations respectively.

• The VAS node is able to start oven baking action by posting the
command and can receive the oven status event with the data of
name, status string (Running, Idle, and Pause) and time-stamp.

• The VAS node is able to put the refrigerator’s working status to
Fastfreeze and to read the property.

• Once the solar and wind energy are abundant during the next 20
minutes according to the forecast, the VAS sends a baking start
command to the oven and put the refrigerator’s property to
Fastfreeze to take full advantages of renewable energies.

Developed

User Interfaces

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 38

- Public -

6.3. Internal point testing 6 – Solar irradiance forecast

6.3.1. Testing case design

Functionalities:

The user can monitor the microgrid operation and smart appliances
working status.

Real results (demo) Related snapshots of the GUIs, waveforms, control boards, setups, data
flows are included in Annex VIII.

Deviations None.

Other technical issues Remote baking only works when the VAS agent just started. It is fixed by
GORENJE by setting the previous task status to finished/cancelled.

Status Passed after correction.

Notes None.

Internal point testing 6 Solar irradiance forecast

Test scenario and goal Provide a short-term prediction of solar irradiance for residences and utility
who have PV panels to enhance the energy management system capability.

Iterations The test will be conducted 3 times.

VICINITY
components/functions
involved

• Adapter of VAS - “Solar irradiance forecast” v1.0.0
• Agent v0.6.3
• Gateway API v0.6.3
• VICINITY Neighbourhood manager v0.6.3

Equipment and testing
environments

• Microgrid emulation workstations in AAU lab
• Chroma Grid Simulator
• Local resistive loads
• Energy management system

Deployment • The VAS is established based on Python 3, which is connected to
LabVIEW-based Energy Management System through TCP/IP
(http://localhost:10005). It can be run on any PC by executing the .py
file.

Expected results • A Residential microgrid setup that involves renewable energy resources
(PV panels and a wind turbine) and DC/AC power converters is properly
running.

• A testing device node and the VAS are registered in VICINITY.
• VAS node can publish an event with solar irradiance forecast in 15

minutes and the testing device node can subscribe to the event.
Test procedure The test procedure consists of the following steps:

• The tester first needs to build a residential microgrid.
• Register Solar irradiance forecast VAS and a testing device in VICINITY

Neighbourhood Manager.
• The testing device node subscribes to the event published by the VAS.
• End of test.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 39

- Public -

6.3.2. Testing Platform

Figure 10 Testing platform and involved components for internal point testing 6.

6.3.3. Testing Results

Internal point testing 6 Solar irradiance forecast

Real results • A Residential microgrid setup is properly running.
• Agent starts up without failing and successfully registers the testing

device and the VAS in the Neighbourhood Manager.
• The VAS node is able to publish an event with the data of short-term

solar irradiance forecast which is calculated by energy management
system.

• The testing device node is able to subscribe to the published VAS.
Developed

User Interfaces

Functionalities:

Allow the residence and utility plan their power demand and load
scheduling based on the solar irradiance prediction.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 40

- Public -

Real results (demo) Related snapshots of the GUIs, waveforms, control boards, setups, data
flows are included in Annex IX.

Deviations None.

Other technical issues None.

Status (Passed/Passed
after corrections/Failed)

Passed.

Notes None.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 41

- Public -

7. Internal point testing – CERTH/ITI Smart House (smart living
and eHealth at Home) (CERTH, GNOMON - GR)

7.1. Testing objective, Testing Environment and the Role of the Vicinity Prototype

CERTH/ITI Smart house is an excellent candidate for conducting tests for VICINITY IoT Platform, since it can
offer an environment similar to the elder citizens’ houses of MPH. The Smart House was used both for
conducting T6.1 and T6.2 tests before actual deployment. The scope of T6.2 tests is to validate the
developed VICINITY components in cases further than the simple integration that took place in T6.1.

VICINITY creates virtual Neighbourhoods of devices and services, which can interact with one another under
a common language. The Use Case at MPH premises will be consisted of many virtual Neighbourhoods.
Thus, it is very important to ensure the privacy of data, by ensuring that data can be seen and transmitted
to certain services inside a virtual Neighbourhood, only if access is granted to these services. This will be
the scope of Test 7.

Moreover, MPH is a large-scale use case which will integrate many different infrastructures (Organisations)
to VICINITY. While in T6.1 we test the simple integration of an infrastructure to VICINITY, in T6.2 we test
the integration of a big number of different IoT infrastructures, in terms of Organisation creation, device
registration, friendships and contracts. An automated procedure has been developed in order to ease the
integration of each elder home and middle-aged citizen, which is also tested. This will be the scope of Test
8.

7.2. Internal point testing 7 - Privacy testing using a Smart Home scenario

7.2.1. Testing case design

Internal point testing 7 Privacy testing using a Smart Home scenario

Test scenario and goal This test focuses on the testing of VICINITY Neighbourhood Manager,
Agent and Gateway, in terms of privacy for the use case 3.1 regarding the
elder citizens homes. The privacy is tested in three different ways.

Iterations The test will be conducted five times.

VICINITY
components/functions
involved

• Neighbourhood Manager v0.6.3
• Agent v0.6.3.1
• Gateway API v0.6.3.1
• Adapter for building sensors based on IoTivity Platform v0.0.1
• Adapter for Gorenje fridge and oven v1.0.0
• Testing VAS v0.0.1

Equipment and testing
environments

• Motion sensors
• Door sensor
• Pressure sensor
• Panic Button
• Gorenje Fridge
• Gorenje Oven

Deployment • The building sensors adapter is deployed on a Raspberry Pi, similarly
to what will be deployed in the elder house.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 42

- Public -

• The adapter for Gorenje devices is deployed on Gorenje Cloud
Infrastructure.

• The testing VAS is deployed on local server.
Expected results • Motion, door and bed sensors are expected to be able to send new

values to the testing VAS when there is a contract between them but
not when the contract is removed.

• Subscription to Gorenje devices events should not be possible if a
contract does not exist between the devices and the subscriber (VAS).

Test procedure The test procedure consists of the following steps:
Privacy testing (a):
• Two VICINITY Organisations (e.g. A, B) are created through

Neighbourhood Manager, each one having one VICINITY Agent. The
Organisation A owns a group of devices in the smart house while the
Organisation B is the service provider.

• The gateway API and the multi-tenant agent are running on a server.
• The Organisation of the VAS (B) will become friends with Organisation

A.
• The VAS will make a contract with group’s A devices.
• Motion, door, bed sensors and panic button of Organisation A will be

triggered in order to send new values to the testing VAS.
• The contract between devices of group A and the VAS will be removed

from the Neighbourhood manager.
• Motion, door, bed sensors and panic button of Organisation A will be

triggered in order to send new values to the testing VAS. The
operation should no longer be possible.

Privacy testing (b):
• The Organisation of the VAS (B) will become friends with Organisation

of Gorenje.
• The VAS declares the subscription to the Gorenje devices door events

in agent configuration file.
• The VAS should be denied subscription, since there is no contract. The

fridge/oven door is opened. The VAS should not be able to get any
events yet.

• The VAS will make a contract with the two Gorenje devices.
• The fridge/oven door is opened. The VAS should be able to get events.
Privacy testing (c):
• Update the TD of the VAS.
• Trigger sensors in order to send measurement to VAS. (this should not

be possible)
• Re-accept contracts.
• End of test.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 43

- Public -

7.2.2. Testing Platform

Figure 11 Testing platform and involved components for internal point testing 7.

7.2.3. Testing results

Internal point testing 7 Privacy testing using a Smart Home scenario

Real results • All sensor values of Organisation A reach VAS of Organisation B when
there is an active contract and cannot reach it when contract is
removed.

• The VAS is not able to subscribe to devices if there is not an active
contract between them. Events from Gorenje devices reach VAS after
successful subscription.

• Transfer of measurement is not possible after update in the TD of the
VAS.

Developed

User Interfaces

Functionalities:

Real results (demo) Related snapshots of the GUIs, waveforms, control boards, setups, data
flows are included in Annex X.

Deviations No deviations

Other technical issues During this procedure the feature of having the ability to update items in
VICINITY was proposed by CERTH and GNOMON. In discussion with BVR
and IS the contracts behaviour in such case was decided.

Status Passed

Notes Privacy testing guarantees that whenever a citizen wishes to no longer
share his/her device data through VICINITY, he/she is able to do so by
removing the contract between the devices and the VAS. (Should not be
confused with the testing of the integration of the infrastructure and the
communication with the VAS which has been tested in T6.1.)

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 44

- Public -

7.3. Internal point testing 8 – Large scale integration of eHealth infrastructures

7.3.1. Testing case design

Privacy testing b is important since many VICINITY Organisations will be
friends with Gorenje Organisation but only the VAS that has contract with
a specific device can see its properties/actions/events. This means that
other partners Organisations can see the devices that are deployed in the
elder citizen house when looking at the Neighbourhood Manager
interface, but they cannot access them through VICINITY P2P network.
(Should not be confused with the testing of VICINITY event functionality
which is done in T6.1.)

Privacy testing c guarantees that the citizen gives his/her data only for
the service operations upon which he/she has agreed (by accepting
contract). If a service exposes new operations to VICINITY, the citizen will
need to give new permission to the service for his/her data. (Should not
be confused with the testing of the integration of the infrastructure and
the communication with the VAS which has been tested in T6.1.)

Internal point testing 8 Large scale integration of eHealth infrastructures

Test scenario and goal This test focuses on testing of automatic integration of a big number of
infrastructures into VICINITY for both use case 3.1 and 3.2.

Iterations More than 50 times

VICINITY
components/functions
involved

• Neighbourhood Manager API v0.6.3
• Agent v0.6.3.1
• Service for automatic registration to VICINITY
• Adapter for building sensors based on IoTivity Platform v0.0.1
• Adapter for medical devices based on NodeRed Platform v0.0.1
• Adapter for middle-aged citizen device integrated in EHealthPass App

v0.0.1
• Storage and GDPR VAS v1.0.0

Equipment and testing
environments

• Blood-pressure monitor
• Weight scale
• Activity tracker
• Motion sensors
• Door sensor
• Pressure sensor
• Panic Button

Deployment • The medical and building sensors adapters are deployed on Raspberry
Pis (uc 3.1) and smartphones (uc 3.2).

• The GDPR VAS is deployed on local server.
Expected results • After first measurement is taken, the organisation should be created

in VICINITY, the device should be registered and, friendships and
contracts should be made.

• Measurement reaches the GDPR VAS.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 45

- Public -

7.3.2. Testing Platform

Figure 12 Testing platform and involved components for internal point testing 8.

Test procedure The test procedure consists of the following steps:
For Raspberry Pi:
• A new measurement from a device/sensor is taken for the first time

and transferred to Raspberry Pi.
• Neighbourhood Manager API is used to automatically create the

Organisation of this device, the registration of device to VICINITY
(including Agent configuration), the friendship between the device
Organisation and the GDPR VAS Organisation (Municipality), the
contract between the device and VAS.

• Log in to Vicinity Neighbourhood Manager and search the newly
created Organisation, device etc.

For smartphone:
• Launch EHealthPass Vicinity extended App and select "Register now“.
• Fill in name, email etc. in the registration form and press "Register".
• Log in to EHealth Pass and wait for registration process to complete.

At this step Neighbourhood Manager API is used to automatically
create the Organisation for the middle-aged citizen, the registration
of activity tracker, weight scale and beacon reader to VICINITY
(including Agent configuration), the friendship between the citizen
Organisation and the GDPR VAS Organisation (Municipality), the
contract between the devices and VAS.

• Log in to Vicinity Neighbourhood Manager and search the newly
created Organisation, device etc.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 46

- Public -

7.3.3. Testing Results

Internal point testing 8 Large scale integration of eHealth infrastructures

Real results • Organisation is created in VICINITY, device(s) is/are registered,
friendships and contracts are made.

• Measurement is successfully transferred to GDPR VAS.
Developed

User Interfaces

-

Functionalities:-

Real results (demo) Related snapshots of the GUIs, waveforms, control boards, setups, data
flows are included in Annex XI.

Deviations No deviations

Other technical issues Problems in the view of NM interface were identified due to the big
number of contracts and contracted devices/services, which was tracked
and solved.

Enhancements to the NM API services were proposed and implemented
(e.g. avoid double creation of contracts).

Status Passed after corrections

Notes This test is important for checking what happens when increasing the
usage limits of VICINITY Platform. (Should not be confused with the
testing of the integration of the infrastructure and the communication
with the VAS which has been tested in T6.1.)

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 47

- Public -

8. Internal point testing – Integration of Internet of Everything
Lab (ATOS - ESP)

8.1. Testing objective, Testing Environment and the Role of the Vicinity Prototype

The goal behind the integration of the assets of the Internet of Everything (IoE) lab will be twofold: on the
one hand, the devices will be made available through VICINITY, thus increasing the overall tally of “visible”
and heterogeneous objects. On the other hand, this testing phase will lead to the implementation of a
couple of adapters tailored to “translate” the legacy data sets into VICINITY’s The Thing Description
semantic model. In this sense, the adapters are something that might be leveraged by others, hence
opening a huge door to the fostering of new platforms in a straightforward and almost “plug-and-play” way.

Namely, the integration of the IoE Lab has given rise to the following adapters:

• MQTT/Cayenne Low Payload Protocol (LoRaWAN) - https://github.com/vicinityh2020/vicinity-
adapter-cayenne

• FIWARE-NGSIv2 - https://github.com/vicinityh2020/vicinity-adapter-ngsiv2

Last, but not least, it is worth highlighting that ATOS did not have any kind of participation of the
development of Value-Added Services; hence, the scope of these test is bounded to the integration of Lab’s
devices into VICINITY.

8.2. Internal point testing 9 - Integration of LoRa devices

8.2.1. Testing case design

1 https://www.st.com/content/st_com/en/products/microcontrollers/stm32-32-bit-arm-cortex-mcus/stm32-
ultra-low-power-mcus/stm32l0-series/stm32l0x3/stm32l073rz.html

2 https://www.multitech.com/brands/multiconnect-conduit

Internal point testing 9 Integration of LoRa devices

Test scenario and goal Integration of the IoE Lab’s assets through a LoRaWAN Network Server

Iterations The test was repeated in a daily basis from the moment the whole stack
was ready. Moreover, the process was repeated between different
VICINITY nodes deployed on different networks and locations

VICINITY
components/functions
involved

• Cayenne Adapter v0.5
• Agent (Active and Passive Discovery) v0.6.3
• Gateway API v0.6.3
• Neighbourhood Manager v0.6.3

Equipment and testing
environments

• LoRaWAN (based on STM32 boards 1) devices with board
temperature sensors

• Raspberry Pi3 + LoRaWAN hat behaving as LoRa nodes, with
temperature, relative humidity, barometric pressure and GPS sensors

• LoRaWAN gateway (Multitech Conduit2)
• Raspberry Pi3 + Multi-channel concentrator behaving as LoRaWAN

gateway

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 48

- Public -

3 https://www.thethingsnetwork.org/
4 https://www.loraserver.io/loraserver/overview/

• The Things Network open-source Application Server3
LoRaServer open-source LoRaWAN network server4

Deployment • Cayenne adapter was developed using Python 3, running of one of
the Raspberry Pi 3 owned by the lab. Anyway, as it is based on Python,
any kind of computer is able to run the module

• As for the LoRaWAN stack, based on TTN, which provides an MQTT
Broker where we are going to create a subscription
(mqtt://eu.thethings.network). The gateway chosen for this was the
Multitech Conduit

• A second Raspberry Pi 3 was used to host the VICINITY Agent and
Gateway API instances.

Expected results • A number of MQTT/Cayenne-connected devices deployed within the
Internet of Everything will be accordingly registered onto VICINITY

• Together with the data harvested from the sensors, the Cayenne
protocol also transmits information about the exchange of
information (e.g. Signal to Noise Ratio – SNR, Received Signal to
Strength Indicator – RSSI, etc).

• Measures from the different devices’ sensors (e.g. temperature,
relative humidity, battery…) will be available and exposed through
the VICINITY ecosystem

• Nodes should also generate events that another VAS could subscribe
to

Test procedure • First of all, apart from the VICINITY steps that are defined below, it is
deemed necessary to have the whole LoRaWAN stack up-and-running
in order to stick to the dataflows generated by the nodes. That is:
o The Gateway must have installed either TTN or LoRaServer

stacks. In the scope of this tests, we have opted for the former
one (TTN). Moreover, we have chosen the Over-The-Air-
Activation (OTAA) mode as the mode nodes are getting
connected to the network.

o After configuring the LoRaWAN’s Network Server, nodes’ setup
must be tweaked so that they can be bound to the appropriate
Application Server (i.e. via App EUI and App Key).

o Some information displayed at the Network Server user
interface must be used when it comes the set up the Cayenne
adapter. Technically speaking, the location and credentials of
the Network Server’s MQTT (Message Queue Telemetry
Transport) Broker are to be included in the adapter’s
configuration file.

• The testing phase must validate the correct implementation of the
Cayenne adapter in two different phases: first, assuming that the
payload arrives to the adapter encoded, that is, in a raw base-64
format. Second, off-the-shelf packet forwarders, like TTN’s, do
perform a parsing operation before forwarding to the next stage. On
this, the adapter will receive the payload already processed and, thus,
the first steps could be skipped

• IoE Lab’s devices must be correctly integrated within the VICINITY
ecosystem. This way, their output data will be accessible through
VICINITY nodes (i.e. Agent) and VICINITY neighbourhood manager

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 49

- Public -

8.2.2. Testing Platform

Figure 13 Testing platform and involved components for internal point testing 9.

8.2.3. Testing results

VICINITY Node

Cayenne2Vicinity
adapter

LoRaWAN devices

Connection
with VICINITY
Cloud

• The tester shall be able to subscribe (via VICINITY legacy operation
and through the Network Server MQTT Broker) to the devices’ data
streams, so that he/she would be able to see, at the same time, the
legacy information flow coming from the LoRaWAN stack and its
VICINITY equivalent.

• The tester can verify the correct operation by assessing that the
information seen through the two methods described in the above
point is identical (the payload).

Internal point testing 9 Integration of LoRa devices

Real results • For this integration phase, a single node was subject of the recurrent
tests

• With all the LoRaWAN/TTN stack online, we ran the MQTT/Cayenne
adapter (important to say that this must go before starting the Agent)

• Assuming that the VICINITY node’s Gateway API instance is running,
the Agent was assessed in its two different discovery operations: 1-
Passive discovery, where the Agent explicitly requested the adapter
the list of available devices/objects; 2- Active discovery, where is the
adapter the responsible for spreading the apparition of a new object

• Done this, the node is successfully displayed on the Neighbourhood
Manager user interface

Developed

User Interfaces

(No user interface)

Real results (demo) All tangible results have been shifted to Annex XII

Deviations 09.09.2018

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 50

- Public -

8.3. Internal point testing 10 – Generic integration of FIWARE-compliant devices

8.3.1. Testing case design

Bug #48 Mismatch between agent and adapter paths

In a first version, as the sample of thing description was caught from a
raw documentation page, the developer did not realize that the read_link
endpoints were different to the ones they should have been. As soon as
the error was spotted, the solution was immediate

Other technical issues None

Status Passed after corrections

Notes As hinted throughout the text

Internal point testing 10 Generic integration of FIWARE-compliant devices

Test scenario and goal The main goal of this test is to integrate the same set of devices that was
registered in the above case (Section 8.2). However, in this case, the path
followed by the data until it gets the VICINITY Cloud is rather different.
Instead of relying on a fully-fledged-open-source LoRaWAN stack to cater
data to VICINITY, this test leads to a new element.

Iterations Same operation as that of Section 8.2

VICINITY
components/functions
involved

• FIWARE-NGSIv2 Adapter v0.6
• Agent (Active and Passive Discovery) v0.6.3
• Gateway API v0.6.3
• Neighbourhood Manager v0.6.3

Equipment and testing
environments

• LoRaWAN (based on STM32 boards) devices with board temperature
sensors

• Raspberry Pi3 + LoRaWAN hat behaving as LoRa nodes, with
temperature, relative humidity, barometric pressure and GPS sensors

• Raspberry Pi3 + Multi-channel concentrator behaving as LoRaWAN
gateway

• The Things Network open-source Application Server
• Raspberry Pi3 hosting the required FIWARE components (Orion

Context Broker + LoRaWAN IoT Agent)
Deployment • In this case, the framework used for implementing the FIWARE-

NGSIv2 is NodeJS. This is due to the fact that most of the Generic
Enablers provided by FIWARE has been done with it. Therefore, the
adapter can be run on any platform (in this case, a Raspberry Pi 3)

• Regarding the LoRaWAN gateway, for this integration we have used a
Raspberry Pi 3 plus a Multi-channel concentrator

• A third Raspberry Pi 3 was used to host the VICINITY Agent and
Gateway API instances.

Expected results • A number of devices deployed within the Internet of Everything will
be accordingly registered onto VICINITY; this time via FIWARE-NGSI
APIs

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 51

- Public -

8.3.2. Testing Platform

Figure 14 Testing platform and involved components for internal point testing 10.

8.3.3. Testing Results

VICINITY Node

Ngsi2Vicinity
 adapter

iot-agent-lora

LoRaWAN devices

Connection
with VICINITY
Cloud

• All the expected results are identical to the ones described in Section
8.2

Test procedure • Regarding the configuration of the LoRaWAN stack (two boxes at the
left in Fig.14), we have harnessed that the process had been already
carried out in the previous phase (Section 8.2)

• In between LoRaWAN and VICINITY networks, some FIWARE
components are to be deployed so as to connect all the data flow.
Namely, a LoRaWAN IoT-Agent has to hook at the LoRaWAN Network
Server MQTT Broker (alike the Cayenne case). Besides, the devices
must be manually registered at the Orion Context Broker. These steps
done, the adapter only has to point out to the Context Broker and
stay tuned to the updates coming from the sensors

Internal point testing 10 Generic integration of FIWARE-compliant devices

Real results • Same as Section 8.2

Developed

User Interfaces

(No user interface)

Real results (demo) All tangible results have been shifted to Annex XIII

Deviations All the lessons learned from Section 8.2 were applied to this stage and
the integration was almost seamless.

Other technical issues None

Status Passed after corrections

Notes It is important to highlight that the introduction of the FIWARE-NGSIv2
adapter does not only offer access to these LoRaWAN devices, but also to

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 52

- Public -

a countless number of off-the-shelf IoT infrastructures based on this well-
known framework.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 53

- Public -

9. Internal point testing – Scalability and Privacy Evaluations of
VICINITY Architecture (UNIKL - GER)

The following Chapter gives an Outlook on what VICINITY is currently evaluating, beyond the scope of the
Description of Work. VICINITY aims to not only fulfil its goals, formulated at the very beginning, but also to
adapt to latest trends and technologies, that arise in this fast-paced world of the Internet of Things. While
keeping the intended structure of this deliverable, please note, that the following contains current, ongoing
work, still in early stages of development. The previous chapters have demonstrated extensive Lab-testing
of the VICINITY components, yet the following work can be seen as an outlook onto what will be integrated
and what methodologies will be used for testing in VICINITYs upcoming, final year! At the time of writing,
the following is not yet integrated into the VICINITY network. However, future integration is already being
discussed with some of the pilot sites.

9.1. Testing objective, Testing Environment and the Role of the Vicinity Prototype

Two major challenges in the Internet of Things in general and hence for VICINITY in particular, is the
scalability, so the ability to handle the rapidly growing number of connected devices on one hand, and
ensuring users privacy on the other hand.

The first internal point testing (Internal point testing 11 - Integration of Omnet++ Network Simulator into
VICINITY) will evaluate VICINITYs scalability. To this end, one of the Pilot Site Use Cases is simulated and
evaluated before the actual deployment on site.

The second test case (Internal point testing 12 – Evaluation and Research on Homomorphic Encryption to
be used for data aggregation for VAS) attempts to further improve the existing privacy, which is already
built into VICINITYs design. Yet still the VICINITY team is constantly taking users privacy very seriously and
is hence trying to further improve wherever possible.

9.2. Internal point testing 11 - Integration of Omnet++ Network Simulator into VICINITY

9.2.1. Testing case design

Internal point testing
11

Integration of Omnet++ Network Simulator into VICINITY

Test scenario and goal In order to test if the VICINITY approach can handle the ever-growing number
of devices and thus test its scalability before a potential limit is reached, the
team at UNIKL is working on a framework to simulate IoT devices and connect
them to VICINITY. To this end, the Omnet++ network simulator is utilized and
extended with new capabilities, specifically designed for the simulation of IoT
scenarios and stress-testing IoT infrastructures like VICINITY.

As a first test, the Smart Parking Use Case, which will be deployed at the
Tromsø Pilot Site is simulated.

Iterations Early Prototype

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 54

- Public -

Figure 15 High-level model of Smart Parking Use Case.

VICINITY
components/functions
involved

• Not integrated yet

Equipment and testing
environments

• Lab testing
• Omnet++ Network Simulator
• Tromso Smart Parking Use case is simulated

o Simulated Cars enter/leave the facility

Deployment • Omnet++ Simulator deployed in Lab Environment
• Hardware-in-the-Loop integration possible in future testing
• Interaction with real VICINITY virtual Neighbourhood planned for future

version
Expected results • Simulated Cars are able to book parking spaces

• Cars can enter booked parking spaces
• Cars leave parking spaces and get billed

Test procedure The Smart Parking Use Case is implemented using the Omnet++ Network
Simulator and modelled as follows (see Figure 1):

• Simulated Cars are generated and enter the Parking Facility
• The Simulated Cars utilize the Smart Parking App to book a parking

spot
• After some random time, the cars leave the parking facility again

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 55

- Public -

9.2.2. Testing Platform

Figure 16 Testing Framework Architecture- internal point testing 11.

9.2.3. Testing Results

Internal point testing 11 Integration of Omnet++ Network Simulator into VICINITY

Real results In order to examine the scaling capabilities of the proposed simulator, the
lowest abstraction level has been divided into three parts (one for each
parking deck at Level 2). In the following, they will be denoted as L2a, L2b,
and L2c. Level 0 and Level 1 will be denoted as L0 and L1, respectively.
The ability to run simulations in almost real-time is of particular
importance and for this reason, the experiments have also been centered
around the wall clock time (WCT) as an indicator.
The simulation time for each simulation run was set to 120 seconds and
the wall clock time for the single runs was recorded. The wall clock times
reported in Table 1 represent the average of several independent
simulation run times.
As expected, the simulation runs with only the first level L0 and the first
two levels L0 and L1 active have achieved similar average wall clock times.
Since L0 was used to produce information for the levels below, the runs
at this level finished relatively fast. L1 served only as a space division for
the L2, and therefore the overhead added by this level is negligible (only
0.256 seconds). This is also shown in Table 1.
As expected, the first real spike in the average WCT has occurred with the
activation of L2a. In this case, the average WCT increases from 4.516s
(with the activated L0 and L1) to 6 seconds. However, with the addition
of the next two levels L2b and L2c respectively, the overhead did not
increase dramatically and even for the last case, the WCT dropped back
to 5.903 seconds. This was a direct consequence of the architecture of
the underlying model; the three parking decks that are represented by
the levels L2a - L2c, are traversed by cars in sequence. Therefore, we
suppose that the simulation time of 120 seconds is not sufficient to create
an adequate number of nodes at the later levels L2b and L2c respectively.
For this reason, the simulation with all levels activated was repeated with

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 56

- Public -

an additional number of cars as mobile nodes created from the beginning
of the simulation instead of dynamically relying on the information
provided by L0. The WCT for this scenario can be seen in Table 2; it is
again expressed as the average of times required for single simulation
runs.

Real results (demo)

We developed an approach towards modeling Internet of Things
infrastructures together with the implementation of a prototype of a
multi-level simulator. The approach proposes inter-connection between
models at different abstraction levels within the discrete event
simulation framework and has been demonstrated on a smart parking
use case of the VICINITY pilot site in Tromsø. The specific solution for this
use case has used 3 levels of simulation. The first level has been used to
generate abstract information on the general movement of simulated
entities and communication between them. The second level has served
as a space division for the lower level. It produced more detailed
information about the movement that has been used as a basis to
dynamically activate the different parts of the lowest level - Level 2. Level
2 has then used the powerful network simulator OMNeT++ with the INET
framework to simulate the details of a smart parking service, the
movement of users, the communication between them, and the
environment. The experiments executed on the use case show that with
all three levels active the execution time increases almost two times.
With respect to interoperability, the simulator has proven to fulfill the
requirements for an IoT simulator. This is achieved through the following
capabilities:

(1) Dynamic switching between models at different levels of abstraction

(2) Spreading multiple simulation engines across the model tree shown in
Figure 17

(3)Modeling and simulation of mobile system entities and their
communication through the OMNeT++ integration

Annex XIV

Deviations -

Other technical issues • Early development phase, the models still need improvement

Status Not yet ready for production

Notes Research currently being done

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 57

- Public -

Figure 17 The model tree and organisation of hierarchical levels.

Table 1 Wall clock time with different levels activated and dynamically relying on the information provided by L0

Level WCT

L0 4.260315s

L0 + L1 4.516574s

L0 + L1 + L2a 6.003036s

L0 + L1 + L2a + L2b 6.627343s

L0 + L1 + L2a + L2c 5.9030517s

Table 2 Wall clock time with all levels activated

Level WCT

L0 + L1 + L2a + L2b + L2c 9.442795s

9.3. Internal point testing 12 – Evaluation and Research on Homomorphic Encryption to
be used for data aggregation for VAS

9.3.1. Testing case design

Internal point testing 12 Evaluation and Research on Homomorphic Encryption to be used for
data aggregation for VAS

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 58

- Public -

Test scenario and goal Personal data needs to be handled with special care. Even before GDPR
came into action, VICINITY has given much thought on ensuring privacy.
One step further on what VICINITY has already accomplished, would be
to completely anonymize private data. This may find application in some
of VICINITY planned pilot setups.
Homomorphic encryption can help with data anonymization, as it allows
mathematical operations to be performed on encrypted ciphertexts,
rather than on plain text. Data can be collected and aggregated, while
being fully encrypted. After enough input data has been collected, there
is no telling, which part of this aggregation belonged to which user. Data
is anonymized and this aggregation can be decrypted and given to any
VAS to work with.
VICINITY is currently researching if and how this technique can be applied.

Iterations Early prototype

VICINITY
components/functions
involved

• VICINITY Agent v0.6.3.1

Equipment and testing
environments

• Lab Setup
• Fake Data is generated

Deployment • Lab testing. Not yet deployed
Expected results • Only aggregated, anonymized data is visible to the VAS

Test procedure • Data is produced and encrypted with a homomorphic encryption
scheme at the source

• Encrypted data is transmitted as any other payload through the
VICINITY P2P network

• Encrypted data is aggregated
• Encrypted, aggregated data is decrypted and handed to Consumer

(e.g. VAS)

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 59

- Public -

9.3.2. Testing Platform

Figure 18 Testing platform and involved components for internal point testing 12.

9.3.3. Testing results

Internal point testing 12 Evaluation and Research on Homomorphic Encryption to be used for
data aggregation for VAS

Real results • Data can be encrypted, transmitted and aggregated
• Encryption is computationally expensive
• Ciphertexts and Encryption Keys become rather larger

Developed

User Interfaces

Component will be integrated between Agent and Adapter. No GUI

Functionalities:

-

Real results (demo) - Annex XV

Deviations -

Other technical issues • Key management needs improvement
• Key and Ciphertext size need improvement

Status Not yet ready for production

Notes Research currently being done

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 60

- Public -

10. Conclusions

Deliverable D6.2 has been one of the steps to reach milestone MS7, which aims to make a first integrated
and full-featured VICINITY prototype available.

This deliverable provides an overview of the conducted lab-testing for VICINITY prototype under the scope
of each test-bed infrastructure, further summarizing the testing environments/platforms, testing steps,
actual testing results, user interfaces, solved and pending issues.

D6.2 is a continuation of the D6.1, the current document provides detailed information about the Lab tests
for VICINITY server and client infrastructures implemented in WP3 and WP4, and value-added services
defined in WP5 based on cross-domain testing scenarios.

In summarizing the activities of T6.2, intensive and iterative Lab tests have been conducted on the
HIL/experimental platform to ensure that local infrastructure, to be deployed at pilot sites, operates with
the VICINITY platform as expected. This includes:

• Correct processing of control data via the VICINITY adapters and VICINITY core components
• Peer-to-peer communication of user data in real time
• Correct operation of value-added services including cross-domain examples
• Assured data privacy and encryption
• Successful integration of a big number of different IoT infrastructures

Thus the expected technical functionality of the VICINITY prototype has been validated.

The lessons learned from the Lab trial will be forwarded to WP7 for helping a correct deployment of
VICINITY platform at the pilot sites from a technical perspective and to WP8 for helping a technical
evaluation approach design.

Finally, relevant screenshots of test platforms, data flow, GUI, and homomorphic encryption are included
in Annexes as the demonstrator.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 61

- Public -

11. References

[1] htp://www.vicinity-h2020.eu

[2] https://vicinityh2020.github.io

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 62

- Public -

Annex I – Edge Case Testing 1 - Stress registration properties (AAU-
DK)

1. Successful registration response

2. Successful Gateway API response for the device registration

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 63

- Public -

3. Device successfully registered in Neighbourhood manager

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 64

- Public -

Annex II – Edge Case Testing 2 - Limit of parallel registrations
(AAU-DK)

1. Successful registration response with 64 devices

2. Gateway API successful response for the 64 devices registration

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 65

- Public -

3. 64 registered devices in Neighbourhood Manager

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 66

- Public -

4. “Access Points” with 64 devices in Neighbourhood Manager

5. Failed registration response with 65 devices

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 67

- Public -

6. Failed gateway response for 65-device registrations

7. 65 registered devices in Neighbourhood Manager

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 68

- Public -

8. “Access Points” with 65 registered devices in Neighbourhood Manager

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 69

- Public -

Annex III – Edge Case Testing 3 - Large size of payload for GET
request (AAU-DK)

1. GET request is successfully received by the device adapter.

2. GET request is successfully received by the device Gateway.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 70

- Public -

3. Postman successfully receives the requested response with 200000 data.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 71

- Public -

Annex IV – Internal point testing 1 - Optimal usage of parking
slots by considering energy costs (AAU - DK)

1. The real-time experimental platform in AAU IoT-microgrid Lab.

2. After subscribing the event of parking sensor node, the VAS node is able to receive the parking sensor
node events which contains the number of free parking slot and time-stamp.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 72

- Public -

3. The VAS node gets a response stating that the event was successfully sent to a subscriber.

4. The VAS node is able to send an event to the subscriber (testing device node) which contains the number
of free parking slot, real-time charging price and time-stamp.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 73

- Public -

5. The testing device node is able to receive an event which contains the number of free parking slots, real-
time charging price and time-stamp.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 74

- Public -

Annex V – Internal point testing 2 - Abnormal situation
identification for elderly residents (AAU - DK)

1. The refrigerator door status can be requested by the VAS adapter and gateway. The response now
is ”Opened”.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 75

- Public -

2. The care centre (a testing device node) subscribes to the event published by the VAS, The event data
includes the alarm state which now is normal, parking slot reservation number, and the time-step.

3. Once the refrigerator door is opened more than 15 minutes, an emergency alarm event is published

from the VAS adapter and gateway to the subscriber. The data contains the alarm state, reserved
parking slot number for the ambulance, and the time-step.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 76

- Public -

4. The care centre (a testing device node) receives the emergency alarm event which now contains the
alarm state (alarm), reserved parking slot number (1) for the ambulance, and the time-step.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 77

- Public -

Annex VI – Internal point testing 3 - Cleaning and Waste Removal
Notification (AAU - DK)

1. The door sensor status is published through VICINITY gateway.

2. The Cleaning Notification VAS can get the door sensor status by subscribing its event.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 78

- Public -

Annex VII – Internal point testing 4 - Energy consumption
optimization and abnormal alarm (AAU - DK)

1. The real-time experimental platform in AAU IoT-microgrid Lab.

2. GORENJE oven is running and the event can be subscribed by the VAS.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 79

- Public -

3. GORENJE oven is running and the event is sent to VAS gateway.

4. The working status of the refrigerator can be requested by VAS and now the response
is ”fastfreeze”.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 80

- Public -

5. After a while, the total energy consumption is over the normal value. Thus, an energy
consumption abnormal alarm is sent from the VAS to the subscriber.

6. The energy consumption abnormal alarm is sent from the VAS gateway to the subscriber.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 81

- Public -

Annex VIII – Internal point testing 5 - Optimal Scheduling and
Microgrid Operation (AAU - DK)

1. The real-time experimental platform in AAU IoT-microgrid Lab.

2. Once the SoC of battery reaches 80%, the VAS will set the baking parameter and send the baking
command to GORENJE oven and put the GORENJE refrigerator working status to “Fastfreeze”. The
commands are sent oud and VAS adapter receives the responses.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 82

- Public -

3. VAS puts the GORENJE refrigerator working status to “Fastfreeze”.

4. VAS sets the baking parameter and sends the baking command to GORENJE oven.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 83

- Public -

Annex IX – Internal point testing 6 – Solar irradiance forecast
(AAU - DK)

1. The real-time experimental platform in AAU IoT-microgrid Lab.

2. The event about solar irradiance prediction is successfully sent from VAS adapter to the subscriber.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 84

- Public -

3. Response received at the VAS gateway.

4. The solar forecast data is received at the subscriber’s gateway.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 85

- Public -

Annex X – Internal point testing 7 - Privacy testing using a Smart
Home scenario (CERTH/ITI - GR)

Privacy testing (a):
The Organisation of the VAS receives a contract request for the building sensors.

Figure X-1 Contract request needs approval

The owner of the VAS accepts the contract.

Figure X-2 Approved contract between VAS and building sensors

The door sensor is triggered and signal is sent to the VAS.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 86

- Public -

Figure X -3 Door sensor new measurement is sent to the VAS via agent (raspberry pi log)

Figure X -4 Door sensor new measurement is sent to the VAS via agent (agent log)

Contract is deleted and door sensor is triggered again. This time the measurement cannot reach the VAS.
The following message is produced by the gateway api : {"statusCodeReason":"Not found. Destination
object 79a31a4c-9b0b-4426-90c4-53f5866581c2 is not in the list of available objects or it was not possible
to send the message.","error":true,"message":[],"contentType":"application/json","statusCode":404}

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 87

- Public -

Figure X-5 Door sensor new measurement cannot be sent to the VAS via agent (raspberry pi log)

Figure X-6 Door sensor new measurement cannot be sent to the VAS via agent (agent log)

The same procedure was followed for all the sensors.

Privacy testing (b):

The VAS is not able to subscribe to Gorenje Fridge event with id “freezer_door”, since VAS and the device
don’t have a contract yet. Although there is friendship between the two Organisations and the Organisation
of the VAS can see the VICINITY id of the fridge and the events it exposes to VICINITY, the subscription is
denied by gateway api. Below, we see the response from gateway api, to the agent request for subscription.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 88

- Public -

Figure X-7 Subscription to Gorenje fridge event is denied

When a contract is made between the VAS and the device, the subscription request from the agent to
gateway api is accepted.

Figure X-8 Successfully subscribe to Gorenje fridge event

Opening the freezer door creates an event, which now reaches the VAS.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 89

- Public -

Figure X-9 Gorenje freezer door is opened

Figure X-10 Door event from Gorenje fridge reaches the VAS

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 90

- Public -

Privacy testing (c):

A new property called ‘test’ is added in the TD of the TestGDPR VAS. The TD is pushed to the Agent, which
recognizes the change and triggers update operation in NM.

Figure X-11 Agent discovers the change in the service TD and triggers update in NM

The new property can be seen in NM interface.

Figure X-12 Service is updated in NM

After the update, all the service’s contracts become in active. The service owner will need to re-accept the
contracts.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 91

- Public -

Figure X-13 Service owner needs to re-accept the contract

After re-approval of contracts on the service side, the service owner will have to wait for the infrastructure
to also re-approve the contract.

Figure X-14 Contracts need to be validated from both Organisations

The infrastructure owner can re-approve the contract with the service, for all or for only some of his devices.

Figure X-15 Devices owner needs to re-accept the contract

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 92

- Public -

Annex XI – Internal point testing 8 – Large scale integration of
eHealth infrastructures (CERTH, GNOMON - GR)

When a measurement of a sensor reaches the VICINITY adapter running on the raspberry pi or the
smartphone, for the first time, the following procedure is executed:

• Create User, Organisation
• Update User roles
• Create Agent
• Create new config file in the multi-Agent (which contains both the agent id and the adapter id)
• Reconfigure Agent
• Push TD to Agent
• Enable newly registered items
• Create friendship between the created Organisation and the Municipality Organisation
• Create contracts between the registered items and the Storage and GDPR VAS

Figure XI-1 Log of automatic registration service

The created User and Organisation can be seen in the NM interface.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 93

- Public -

Figure XI-2 Organisation view in NM interface

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 94

- Public -

Annex XII – Internal point testing 9 - Integration of LoRa devices
(ATOS - ESP)

1. ATOS’ IoE Lab devices used for the testbed deployment and validation. We can appreciate up to
four different devices: the first two are Raspberry Pi 3 that will play the role of LoRaWAN nodes,
likewise the last one, an embedded system based on an STM32 board, with very limited
computational capacity. In the middle, the third object consists in another Raspberry Pi 3 that has
attached a multi-channel LoRaWAN concentrator on top of it. In this case, this element will behave
as the LoRaWAN Server.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 95

- Public -

2. After the nodes and the LoRaWAN Gateway Network and Application Servers are up-and-running,
we can see on TTN’s Console that data is actually being sent

3. Thanks to the built-in, MQTT Broker provided by TTN, we can subscribe to every message
generated by the nodes.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 96

- Public -

4. For the sake of illustration, once the VICINITY Agent is executed (passive discovery mode), the
adapter’s log displays a request, coming from the Agent, of all the available nodes.

5. After all the process, the Neighbourhood Manager dashboard displays the registered devices.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 97

- Public -

Annex XIII – Internal point testing 10 – Generic integration of
FIWARE-compliant devices (ATOS - ESP)

1. ATOS’ IoE Lab devices used for the testbed deployment and validation. At the upper part of the
picture we can see a Multitech Conduit LoRaWAN server; on the other hand, we can find below a
LoRaWAN node (again, based on an STM32 board).

2. After registering the devices onto the Orion Context Broker, we can use an instance of a tool called
Orion Explorer5 to visually check that the device has been successfully registered.

3. At the same time, we can see as the VICINITY adapter subscribe to ORION’s events (all devices)

5 https://github.com/VM9/fiware-orion-explorer

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 98

- Public -

4. To illustrate the correct operation, below we show how the agent correctly extracts the
information from the adapter

5. Last, but not least, the following screenshot proofs that the device has been successfully registered
and shown on the Neighbourhood Manager user interface. NOTE: We have kept the registered
devices from our other integration test.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 99

- Public -

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 100

- Public -

Annex XIV – Internal point testing 11 - Integration of Omnet++
Network Simulator into VICINITY (UNIKL - GER)

Figure XIV_1 Multi-level simulation framework based on Omnet++

Figure XIV_2 Omnet++ GUI of Tromso Smart Parking Use Case Simulation

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 101

- Public -

Annex XV – Internal point testing 12 – Evaluation and Research
on Homomorphic Encryption to be used for data aggregation for
VAS (UNIKL - GER)

(Partially) Homomorphic encryption is a form of encryption that enables (limited) mathematical operations
to be performed on the encrypted cyphertext, without the need to decrypt the information first. The
generated results match the result of the operations, as if they had been performed on the plaintext.

Formally speaking, if E(x) denotes the encryption of the data x, this means (w.l.o.g.) e.g. for multiplications
of data x,y,

E(x) * E(y) = E(x*y)

Ultimately, one does not even need access the plaintext to calculate e.g. the sum. This feature can be
utilized to first encrypt personal data, like the energy consumption mentioned in the above example, using
a homomorphic encryption scheme. Only the encrypted data is then transmitted to the receiving end, like
the VICINITY node running the micro-service for anonymous data-aggregation. The micro-service can then
sum up multiple encrypted data, even though it cannot read the individual plaintexts. After the calculation,
the individual parties need to decrypt their part of the encrypted sum and now only the overall sum will be
available as plaintext to the VAS.

UNIKL is currently looking into ways to further exploit the P2P nature of VICINITY to further optimize this
process and enhance its performance. A first working prototype is already implemented and basis for
further research and testing.

Applications in VICINITY pilots and intended prove-of-concept

Discussions in the VICINITY consortium have shown that the micro-service described above is useful for
some of the VICINITY pilots as of now. The team at ENERC has already given some scenarios where this very
technique can be applied. The existing Prototype is a good starting point for further discussion. Next steps
necessary to have it applied on the pilot site have been identified.

The use-case currently used for lab-testing is depicted in Figure 1: Multiple household appliances are
equipped with smart energy meters. Their data is collected for internal evaluation (e.g. how many hours
and energy, one has wasted watching TV). However, for external use, only the overall energy consumption
is required, yet still making sure that each device is indeed reporting its consumption. To this end, data can
be encrypted using a homomorphic encryption scheme and sent to the aggregation micro-service. While
the receiving side will still be able to validate, that all appliances did send their data, none of the individual
readings is exposed, as only the ciphertext is transmitted. The aggregation micro-service can calculate the
sum, by adding up all ciphertexts. The resulting sum can then be decrypted, of course giving back the same
result, as if it were calculated on the individual plaintexts.

[D6.2 - VICINITY test-bed deployment, including Validation,
Parameterization and Testing] 102

- Public -

Integration into VICINITY components

Encryption/Decryption, in general, and homomorphic encryption schemes, in particular, are costly in terms
of computational effort. However, the same applies to the encryption inside the P2P network already in
place. This needs to be implemented on some gateway device on the edge, also running other VICINITY
components like the VICINITY Gateway API or the VICINITY agent. The homomorphic encryption can be
available as a kind of micro-service that is taking place on the VICINITY nodes and before data is sent out to
the P2P network at all.

Figure 1 illustrates the potential Integration of such a microservice into the current VICINITY architecture:
VICINITY Nodes interested in using Homomorphic encryption can add the respective microservice in
addition to the other components such as the Agent and the Gateway-API. Instead of directly transmitting
new e.g. sensor readings (marked in red), data is first encrypted with the homomorphic encryption scheme.
The encrypted value is then sent, similar to regular payload, through the rest of the chain (agent, gtw-api)
and through the VICINITY network to the receiving end. The same holds for all other measurements, which
will encrypt their data the same way.

On the receiving end, instead of forwarding individual readings to the Value-added Service directly, the
encrypted data is again sent to the homomorphic encryption microservice, which will aggregate the
encrypted values (e.g. calculate the sum over all received data) and will only then decrypt and forward the
aggregated data to the VAS. In both (encrypted and normal) cases, the VAS will end up with an aggregation
of data, which it requires to operate. In contrast to the normal procedure, where the aggregation is
calculated by the VAS itself, with homomorphic encryption the VAS will never know any individual, private
data. This further enhances the “privacy by design” philosophy, which is fundamental to VICINITY from the
very beginning.

